DOI QR코드

DOI QR Code

Integrated Applications of Microalgae to Wastewater Treatment and Biorefinery: Recent Advances and Opportunities

  • Nguyen, Van Tuyen (Advanced Materials and Environmental Technology, National Center for Technological Progress) ;
  • Limjuco, Lawrence A. (Laboratory of Electrochemical Engineering (LEE), Department of Chemical Engineering, University of the Philippines at Diliman) ;
  • Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University) ;
  • Dang, Nhat Minh (VNU Key Laboratory of Advanced Materials for Green Growth, Vietnam National University)
  • Received : 2022.05.14
  • Accepted : 2022.05.27
  • Published : 2022.06.10

Abstract

Microalgae is becoming a vital component for a circular economy and ultimately for sustainable development. Herein, recent developments in different outcomes of microalgae for wastewater treatment and biorefinery were reviewed. From its primary function as a third-generation resource of biofuel, the usage of microalgae has been diversified as an integral element for the CO2 sequestration and production of economically valuable products (e.g., pharmaceuticals, animal feeds, biofertilizer, biochar, etc.). Principles and recent challenges for each microalgae application were presented to suggest a motivation for future research and the direction of development. The integration of microalgae within the concept of the circular economy was also discussed with various routes of microalgae-based biorefinery.

Keywords

Acknowledgement

This research was funded from the Vietnam National University, Hanoi (VNU), under project number TXTCN.21.24.

References

  1. G. Kumar, P. Sivagurunathan, A. Pugazhendhi, N. B. D. Thi, G. Zhen, K. Chandrasekhar, and A. Kadier, A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options, Energy Convers. Manag., 141, 390-402 (2017). https://doi.org/10.1016/j.enconman.2016.09.087
  2. A. Kadier, Y. Simayi, P. Abdeshahian, N. F. Azman, K. Chandrasekhar, and M. S. Kalil, A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production, Alex. Eng. J., 55, 427-443 (2016). https://doi.org/10.1016/j.aej.2015.10.008
  3. M. K. Enamala, S. Enamala, M. Chavali, J. Donepudi, R. Yadavalli, B. Kolapalli, T. V. Aradhyula, J. Velpuri, and C. Kuppam, Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae, Renew. Sust. Energ. Rev., 94, 49-68 (2018). https://doi.org/10.1016/j.rser.2018.05.012
  4. M. A. Islam, K. Heimann, and R. J. Brown, Microalgae biodiesel: Current status and future needs for engine performance and emissions, Renew. Sust. Energ. Rev., 79, 1160-1170 (2017). https://doi.org/10.1016/j.rser.2017.05.041
  5. G. Mujtaba, and K. Lee, Advanced treatment of wastewater using symbiotic co-culture of microalgae and bacteria, Appl. Chem. Eng., 27, 1-9 (2016). https://doi.org/10.14478/ACE.2016.1002
  6. F. M. Santos, and J. C. M. Pires, Nutrient recovery from wastewaters by microalgae and its potential application as bio-char, Bioresour. Technol., 267, 725-731 (2018). https://doi.org/10.1016/j.biortech.2018.07.119
  7. K. Li, Q. Liu, F. Fang, R. Luo, Q. Lu, W. Zhou, S. Huo, P. Cheng, J. Liu, M. Addy, P. Chen, D. Chen, and R. Ruan, Microalgae-based wastewater treatment for nutrients recovery: A review, Bioresour. Technol., 291, 121934 (2019). https://doi.org/10.1016/j.biortech.2019.121934
  8. J. Han, L. Thomsen, K. Pan, and C. Thomsen, Two-step process: Enhanced strategy for wastewater treatment using microalgae, Bioresour. Technol., 268, 608-615 (2018). https://doi.org/10.1016/j.biortech.2018.08.054
  9. A. Otondo, B. Kokabian, S. Stuart-Dahl, and V. G. Gude, Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris, J. Environ. Chem. Eng., 6, 3213-3222 (2018). https://doi.org/10.1016/j.jece.2018.04.064
  10. E. Daneshvar, M. J. Zarrinmehr, A. M. Hashtjin, O. Farhadian, and A. Bhatnagar, Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption, Bioresour. Technol., 268, 523-530 (2018). https://doi.org/10.1016/j.biortech.2018.08.032
  11. M. Wang, Y. Yang, Z. Chen, Y. Chen, Y. Wen, and B. Chen, Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae, Bioresour. Technol., 222, 130-138 (2016). https://doi.org/10.1016/j.biortech.2016.09.128
  12. O. Monroig, D. R. Tocher, and J. C. Navarro, Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms, Mar. Drugs, 11, 3998-4018 (2013). https://doi.org/10.3390/md11103998
  13. W. J. Oswald, H. B. Gotaas, C. G. Golueke, W. R. Kellen, E. F. Gloyna, and E. R. Hermann, Algae in waste treatment with discussion, Sewage Ind. Wastes, 29, 437-457 (1957).
  14. L. Zhu, Biorefinery as a promising approach to promote microalgae industry: An innovative framework, Renew. Sust. Energ. Rev., 41, 1376-1384 (2015). https://doi.org/10.1016/j.rser.2014.09.040
  15. W. N. A. Kadir, M. K. Lam, Y. Uemura, J. W. Lim, and K. T. Lee, Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review, Energy Convers. Manag., 171, 1416-1429 (2018). https://doi.org/10.1016/j.enconman.2018.06.074
  16. N. M. Dang, and K. Lee, Decolorization of organic fertilizer using advanced oxidation process and its application for microalgae cultivation, J. Ind. Eng. Chem., 59, 297-303 (2018). https://doi.org/10.1016/j.jiec.2017.10.035
  17. S. A. Razzak, S. A. M. Ali, M. M. Hossain, and H. deLasa, Biological CO2 fixation with production of microalgae in wastewater - A review, Renew. Sust. Energ. Rev., 76, 379-390 (2017). https://doi.org/10.1016/j.rser.2017.02.038
  18. F. G. Acien, E. Molina, A. Reis, G. Torzillo, G. C. Zittelli, C. Sepulveda, and J. Masojidek, 1 - Photobioreactors for the production of microalgae, In: C. Gonzalez-Fernandez and R. Munoz (eds.). Microalgae-Based Biofuels and Bioproducts, 1-44, Woodhead Publishing, UK (2017).
  19. Y. Chisti, Large-Scale Production of Algal Biomass: Raceway Ponds, In: F. Bux and Y. Chisti (eds.). Algae Biotechnology: Products and Processes, Springer International Publishing, Cham, Switzerland (2016).
  20. A. F. Mohd Udaiyappan, H. Abu Hasan, M. S. Takriff, and S. R. Sheikh Abdullah, A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment, J. Water Process. Eng., 20, 8-21 (2017). https://doi.org/10.1016/j.jwpe.2017.09.006
  21. N. C. Boelee, H. Temmink, M. Janssen, C. J. N. Buisman, and R. H. Wijffels, Balancing the organic load and light supply in symbiotic microalgal-bacterial biofilm reactors treating synthetic municipal wastewater, Ecol. Eng., 64, 213-221 (2014). https://doi.org/10.1016/j.ecoleng.2013.12.035
  22. A. L. Goncalves, J. C. M. Pires, and M. Simoes, Wastewater polishing by consortia of Chlorella vulgaris and activated sludge native bacteria, J. Clean. Prod., 133, 348-357 (2016). https://doi.org/10.1016/j.jclepro.2016.05.109
  23. W. Y. Cheah, T. C. Ling, P. L. Show, J. C. Juan, J.-S. Chang, and D.-J. Lee, Cultivation in wastewaters for energy: A microalgae platform, Appl. Energy, 179, 609-625 (2016). https://doi.org/10.1016/j.apenergy.2016.07.015
  24. K. Katam, and D. Bhattacharyya, Simultaneous treatment of domestic wastewater and bio-lipid synthesis using immobilized and suspended cultures of microalgae and activated sludge, J. Ind. Eng. Chem., 69, 295-303 (2019). https://doi.org/10.1016/j.jiec.2018.09.031
  25. G. Mujtaba, M. Rizwan, and K. Lee, Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris, J. Ind. Eng. Chem., 49, 145-151 (2017). https://doi.org/10.1016/j.jiec.2017.01.021
  26. L. Evans, S. J. Hennige, N. Willoughby, A. J. Adeloye, M. Skroblin, and T. Gutierrez, Effect of organic carbon enrichment on the treatment efficiency of primary settled wastewater by Chlorella vulgaris, Algal Res., 24, 368-377 (2017). https://doi.org/10.1016/j.algal.2017.04.011
  27. J. Yang, Y. Gou, F. Fang, J. Guo, L. Lu, Y. Zhou, and H. Ma, Potential of wastewater treatment using a concentrated and suspended algal-bacterial consortium in a photo membrane bioreactor, Chem. Eng. J., 335, 154-160 (2018). https://doi.org/10.1016/j.cej.2017.10.149
  28. L. Wang, B. Zhong, T. Liang, B. Xing, and Y. Zhu, Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China, Sci. Total Environ., 572, 1-8 (2016). https://doi.org/10.1016/j.scitotenv.2016.07.192
  29. I. Rawat, R. Ranjith Kumar, T. Mutanda, and F. Bux, Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production, Appl. Energy, 88, 3411-3424 (2011). https://doi.org/10.1016/j.apenergy.2010.11.025
  30. C.-C. Tang, W. Zuo, Y. Tian, N. Sun, Z.-W. Wang, and J. Zhang, Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors, Bioresour. Technol, 222, 156-164 (2016). https://doi.org/10.1016/j.biortech.2016.09.123
  31. G. Mujtaba, M. Rizwan, G. Kim, and K. Lee, Removal of nutrients and COD through co-culturing activated sludge and immobilized Chlorella vulgaris, Chem. Eng. J., 343, 155-162 (2018). https://doi.org/10.1016/j.cej.2018.03.007
  32. Y. Shen, J. Gao, and L. Li, Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal, Bioresour. Technol, 243, 905-913 (2017). https://doi.org/10.1016/j.biortech.2017.07.041
  33. L. T. K. Vu, and K.-C. Loh, Symbiotic hollow fiber membrane photobioreactor for microalgal growth and bacterial wastewater treatment, Bioresour. Technol, 219, 261-269 (2016). https://doi.org/10.1016/j.biortech.2016.07.105
  34. M. Nayak, A. Karemore, and R. Sen, Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application, Algal Res., 16, 216-223 (2016). https://doi.org/10.1016/j.algal.2016.03.020
  35. Y. Wang, B. He, Z. Sun, and Y.-F. Chen, Chemically enhanced lipid production from microalgae under low sub-optimal temperature, Algal Res., 16, 20-27 (2016). https://doi.org/10.1016/j.algal.2016.02.022
  36. G. Najafi, B. Ghobadian, and T. F. Yusaf, Algae as a sustainable energy source for biofuel production in Iran: A case study, Renew. Sust. Energ. Rev., 15, 3870-3876 (2011). https://doi.org/10.1016/j.rser.2011.07.010
  37. A. Mahdy, L. Mendez, M. Ballesteros, and C. Gonzalez-Fernandez, Algaculture integration in conventional wastewater treatment plants: Anaerobic digestion comparison of primary and secondary sludge with microalgae biomass, Bioresour. Technol., 184, 236-244 (2015). https://doi.org/10.1016/j.biortech.2014.09.145
  38. D. L. Cheng, H. H. Ngo, W. S. Guo, S. W. Chang, D. D. Nguyen, and S. M. Kumar, Microalgae biomass from swine wastewater and its conversion to bioenergy, Bioresour. Technol., 275, 109-122 (2019). https://doi.org/10.1016/j.biortech.2018.12.019
  39. K. Larsdotter, Microalgae for Phosphorus Removal from Wastewater in a Nordic Climate, Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden (2006).
  40. M. P. Caporgno, A. Taleb, M. Olkiewicz, J. Font, J. Pruvost, J. Legrand, and C. Bengoa, Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane, Algal Res., 10, 232-239 (2015). https://doi.org/10.1016/j.algal.2015.05.011
  41. N. M. Dang, G. Kim, and K. Lee, Mixotrophic cultivation of marine alga Tetraselmis sp. using glycerol and its effects on the characteristics of produced biodiesel, Appl. Chem. Eng., 33, 222-228 (2022).
  42. T. Suganya, M. Varman, H. H. Masjuki, and S. Renganathan, Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach, Renew. Sust. Energ. Rev., 55, 909-941 (2016). https://doi.org/10.1016/j.rser.2015.11.026
  43. J. Trivedi, M. Aila, D. P. Bangwal, S. Kaul, and M. O. Garg, Algae based biorefinery-How to make sense?, Renew. Sust. Energ. Rev., 47, 295-307 (2015). https://doi.org/10.1016/j.rser.2015.03.052
  44. R. A. I. Abou-Shanab, M.-K. Ji, H.-C. Kim, K.-J. Paeng, and B.-H. Jeon, Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production, J. Environ. Manage., 115, 257-264 (2013). https://doi.org/10.1016/j.jenvman.2012.11.022
  45. H. Amini, L. Wang, and A. Shahbazi, Effects of harvesting cell density, medium depth and environmental factors on biomass and lipid productivities of Chlorella vulgaris grown in swine wastewater, Chem. Eng. Sci., 152, 403-412 (2016). https://doi.org/10.1016/j.ces.2016.06.025
  46. X. Deng, K. Gao, M. Addy, P. Chen, D. Li, R. Zhang, Q. Lu, Y. Ma, Y. Cheng, Y. Liu, and R. Ruan, Growing Chlorella vulgaris on mixed wastewaters for biodiesel feedstock production and nutrient removal, J. Chem. Technol. Biotechnol., 93, 2748-2757 (2018). https://doi.org/10.1002/jctb.5634
  47. J. J. Wang, Y. P. Han, J. Y. Chang, and Z. Y. Chen, Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model, J. Quant. Spectrosc. Radiat. Transf., 206, 22-30 (2018). https://doi.org/10.1016/j.jqsrt.2017.10.025
  48. Y. Wang, W. Guo, H.-W. Yen, S.-H. Ho, Y.-C. Lo, C.-L. Cheng, N. Ren, and J.-S. Chang, Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production, Bioresour. Technol., 198, 619-625 (2015). https://doi.org/10.1016/j.biortech.2015.09.067
  49. L. Zhu, Z. Wang, Q. Shu, J. Takala, E. Hiltunen, P. Feng, and Z. Yuan, Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment, Water Res., 47, 4294-4302 (2013). https://doi.org/10.1016/j.watres.2013.05.004
  50. C.-M. Kuo, T.-Y. Chen, T.-H. Lin, C.-Y. Kao, J.-T. Lai, J.-S. Chang, and C.-S. Lin, Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production, Bioresour. Technol., 194, 326-333 (2015). https://doi.org/10.1016/j.biortech.2015.07.026
  51. N. S. Shifrin, and S. W. Chisholm, Phytoplankton lipids: Interspecific differences and effects of nitrate, silicate and light-dark cycles, J. Phycol., 17, 374-384 (1981). https://doi.org/10.1111/j.0022-3646.1981.00374.x
  52. A. M. Illman, A. H. Scragg, and S. W. Shales, Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzyme Microb. Technol., 27, 631-635 (2000). https://doi.org/10.1016/S0141-0229(00)00266-0
  53. H. Wang, H. Xiong, Z. Hui, and X. Zeng, Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids, Bioresour. Technol., 104, 215-220 (2012). https://doi.org/10.1016/j.biortech.2011.11.020
  54. N. M. Dang, and K. Lee, Utilization of organic liquid fertilizer in microalgae cultivation for biodiesel production, Biotechnol. Bioprocess Eng., 23, 405-414 (2018). https://doi.org/10.1007/s12257-018-0081-3
  55. N. Xu, X. Zhang, X. Fan, L. Han, and C. Zeng, Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta), J. Appl. Phycol., 13, 463-469 (2001). https://doi.org/10.1023/A:1012537219198
  56. M. J. Griffiths, and S. T. L. Harrison, Lipid productivity as a key characteristic for choosing algal species for biodiesel production, J. Appl. Phycol., 21, 493-507 (2009). https://doi.org/10.1007/s10811-008-9392-7
  57. G. Kim, J. Bae, and K. Lee, Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp., Bioresour. Technol., 205, 274-279 (2016). https://doi.org/10.1016/j.biortech.2016.01.045
  58. D. Nhat Minh, and L. Kisay, Recycling of lipid-extracted algae cell residue for microorganisms cultivation and bioenergy production, Appl. Chem. Eng., 32, 487-496 (2021). https://doi.org/10.14478/ACE.2021.1076
  59. J. E. Keffer, and G. T. Kleinheinz, Use of Chlorella vulgaris for CO(2) mitigation in a photobioreactor, J. Ind. Microbiol. Biotechnol., 29, 275-280 (2002). https://doi.org/10.1038/sj.jim.7000313
  60. F. Guiheneuf, and D. B. Stengel, Towards the biorefinery concept: Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum, Algal Res., 10, 152-163 (2015). https://doi.org/10.1016/j.algal.2015.04.025
  61. M. S. Madeira, C. Cardoso, P. A. Lopes, D. Coelho, C. Afonso, N. M. Bandarra, and J. A. M. Prates, Microalgae as feed ingredients for livestock production and meat quality: A review, Livest. Sci., 205, 111-121 (2017). https://doi.org/10.1016/j.livsci.2017.09.020
  62. M. Rizwan, G. Mujtaba, S. A. Memon, K. Lee, and N. Rashid, Exploring the potential of microalgae for new biotechnology applications and beyond: A review, Renew. Sust. Energ. Rev., 92, 394-404 (2018). https://doi.org/10.1016/j.rser.2018.04.034
  63. A. Ajeej, J. V. Thanikal, C. M. Narayanan, and R. Senthil Kumar, An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper, Renew. Sust. Energ. Rev., 50, 270-276 (2015). https://doi.org/10.1016/j.rser.2015.04.121
  64. Z. Yaakob, E. Ali, A. Zainal, M. Mohamad, and M. S. Takriff, An overview: biomolecules from microalgae for animal feed and aquaculture, J. Biol. Res., 21, 6-6 (2014). https://doi.org/10.1186/2241-5793-21-6
  65. H. B. Goyal, D. Seal, and R. C. Saxena, Bio-fuels from thermochemical conversion of renewable resources: A review, Renew. Sust. Energ. Rev., 12, 504-517 (2008). https://doi.org/10.1016/j.rser.2006.07.014
  66. H. A. Alhashimi, and C. B. Aktas, Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis, Renew. Sust. Energ. Rev., 118, 13-26 (2017).
  67. K. L. Yu, B. F. Lau, P. L. Show, H. C. Ong, T. C. Ling, W.-H. Chen, E. P. Ng, and J.-S. Chang, Recent developments on algal biochar production and characterization, Bioresour. Technol, 246, 2-11 (2017). https://doi.org/10.1016/j.biortech.2017.08.009
  68. E. Marris, Black is the new green, Nature, 442, 624-626 (2006). https://doi.org/10.1038/442624a
  69. Y. Li, M. Horsman, N. Wu, C. Q. Lan, and N. Dubois-Calero, Biofuels from Microalgae, Biotechnol. Prog, 24, 815-820 (2008).
  70. S. Millao and E. Uquiche, Antioxidant activity of supercritical extracts from Nannochloropsis gaditana: Correlation with its content of carotenoids and tocopherols, J. Supercrit. Fluids, 111, 143-150 (2016). https://doi.org/10.1016/j.supflu.2016.02.002
  71. M. E. Gershwin, and A. Belay, Spirulina in Human Nutrition and Health, CRC Press, USA (2007).
  72. J. A. Del Campo, M. Garcia-Gonzalez, and M. G. Guerrero, Outdoor cultivation of microalgae for carotenoid production: current state and perspectives, Appl. Microbiol. Biotechnol., 74, 1163-1174 (2007). https://doi.org/10.1007/s00253-007-0844-9
  73. L. Barsanti and P. Gualtieri, Algae: Anatomy, Biochemistry, and Biotechnology, 2nd ed., CRC Press, USA (2014).
  74. A. Richmond, Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell, UK (2003).
  75. Y. P. Xie, S. H. Ho, C. Y. Chen, C. N. N. Chen, C. C. Liu, I. S. Ng, K. J. Jing, S. C. Yang, C. H. Chen, J. S. Chang, and Y. H. Lu, Simultaneous enhancement of CO2 fixation and lutein production with thermo-tolerant Desmodesmus sp. F51 using a repeated fed-batch cultivation strategy, Biochem. Eng. J., 86, 33-40 (2014). https://doi.org/10.1016/j.bej.2014.02.015
  76. B. Zhao, and Y. Su, Process effect of microalgal-carbon dioxide fixation and biomass production: A review, Renew. Sust. Energ. Rev., 31, 121-132 (2014). https://doi.org/10.1016/j.rser.2013.11.054
  77. Y. Jiang, W. Zhang, J. Wang, Y. Chen, S. Shen, and T. Liu, Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus, Bioresour. Technol, 128, 359-364 (2013). https://doi.org/10.1016/j.biortech.2012.10.119
  78. R. Verma, and A. Srivastava, Carbon dioxide sequestration and its enhanced utilization by photoautotroph microalgae, Environ. Dev., 27, 95-106 (2018). https://doi.org/10.1016/j.envdev.2018.07.004
  79. R. Verma, R. Kumar, L. Mehan, and A. Srivastava, Modified conventional bioreactor for microalgae cultivation, J. Biosci. Bioeng., 125, 224-230 (2018). https://doi.org/10.1016/j.jbiosc.2017.09.003
  80. W. Y. Cheah, P. L. Show, J.-S. Chang, T. C. Ling, and J. C. Juan, Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae, Bioresour. Technol., 184, 190-201 (2015). https://doi.org/10.1016/j.biortech.2014.11.026
  81. B. Wang, Y. Li, N. Wu, and C. Q. Lan, CO2 bio-mitigation using microalgae, Appl. Microbiol. Biotechnol., 79, 707-718 (2008). https://doi.org/10.1007/s00253-008-1518-y
  82. M. K. Lam, K. T. Lee, and A. R. Mohamed, Current status and challenges on microalgae-based carbon capture, Int. J. Green. Gas Control, 10, 456-469 (2012). https://doi.org/10.1016/j.ijggc.2012.07.010
  83. P. K. Kumar, S. V. Krishna, S. S. Naidu, K. Verma, D. Bhagawan, and V. Himabindu, Biomass production from microalgae Chlorella grown in sewage, kitchen wastewater using industrial CO2 emissions: Comparative study, Carbon Resour. Convers., 2, 126-133 (2019). https://doi.org/10.1016/j.crcon.2019.06.002
  84. I. Duran, F. Rubiera, and C. Pevida, Microalgae: Potential precursors of CO2 adsorbents, J. CO2 Util., 26, 454-464 (2018). https://doi.org/10.1016/j.jcou.2018.06.001
  85. K. A. Jung, S.-R. Lim, Y. Kim, and J. M. Park, Potentials of macroalgae as feedstocks for biorefinery, Bioresour. Technol., 135, 182-190 (2013). https://doi.org/10.1016/j.biortech.2012.10.025