Acknowledgement
This research was funded from the Vietnam National University, Hanoi (VNU), under project number TXTCN.21.24.
References
- G. Kumar, P. Sivagurunathan, A. Pugazhendhi, N. B. D. Thi, G. Zhen, K. Chandrasekhar, and A. Kadier, A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options, Energy Convers. Manag., 141, 390-402 (2017). https://doi.org/10.1016/j.enconman.2016.09.087
- A. Kadier, Y. Simayi, P. Abdeshahian, N. F. Azman, K. Chandrasekhar, and M. S. Kalil, A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production, Alex. Eng. J., 55, 427-443 (2016). https://doi.org/10.1016/j.aej.2015.10.008
- M. K. Enamala, S. Enamala, M. Chavali, J. Donepudi, R. Yadavalli, B. Kolapalli, T. V. Aradhyula, J. Velpuri, and C. Kuppam, Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae, Renew. Sust. Energ. Rev., 94, 49-68 (2018). https://doi.org/10.1016/j.rser.2018.05.012
- M. A. Islam, K. Heimann, and R. J. Brown, Microalgae biodiesel: Current status and future needs for engine performance and emissions, Renew. Sust. Energ. Rev., 79, 1160-1170 (2017). https://doi.org/10.1016/j.rser.2017.05.041
- G. Mujtaba, and K. Lee, Advanced treatment of wastewater using symbiotic co-culture of microalgae and bacteria, Appl. Chem. Eng., 27, 1-9 (2016). https://doi.org/10.14478/ACE.2016.1002
- F. M. Santos, and J. C. M. Pires, Nutrient recovery from wastewaters by microalgae and its potential application as bio-char, Bioresour. Technol., 267, 725-731 (2018). https://doi.org/10.1016/j.biortech.2018.07.119
- K. Li, Q. Liu, F. Fang, R. Luo, Q. Lu, W. Zhou, S. Huo, P. Cheng, J. Liu, M. Addy, P. Chen, D. Chen, and R. Ruan, Microalgae-based wastewater treatment for nutrients recovery: A review, Bioresour. Technol., 291, 121934 (2019). https://doi.org/10.1016/j.biortech.2019.121934
- J. Han, L. Thomsen, K. Pan, and C. Thomsen, Two-step process: Enhanced strategy for wastewater treatment using microalgae, Bioresour. Technol., 268, 608-615 (2018). https://doi.org/10.1016/j.biortech.2018.08.054
- A. Otondo, B. Kokabian, S. Stuart-Dahl, and V. G. Gude, Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris, J. Environ. Chem. Eng., 6, 3213-3222 (2018). https://doi.org/10.1016/j.jece.2018.04.064
- E. Daneshvar, M. J. Zarrinmehr, A. M. Hashtjin, O. Farhadian, and A. Bhatnagar, Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption, Bioresour. Technol., 268, 523-530 (2018). https://doi.org/10.1016/j.biortech.2018.08.032
- M. Wang, Y. Yang, Z. Chen, Y. Chen, Y. Wen, and B. Chen, Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae, Bioresour. Technol., 222, 130-138 (2016). https://doi.org/10.1016/j.biortech.2016.09.128
- O. Monroig, D. R. Tocher, and J. C. Navarro, Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms, Mar. Drugs, 11, 3998-4018 (2013). https://doi.org/10.3390/md11103998
- W. J. Oswald, H. B. Gotaas, C. G. Golueke, W. R. Kellen, E. F. Gloyna, and E. R. Hermann, Algae in waste treatment with discussion, Sewage Ind. Wastes, 29, 437-457 (1957).
- L. Zhu, Biorefinery as a promising approach to promote microalgae industry: An innovative framework, Renew. Sust. Energ. Rev., 41, 1376-1384 (2015). https://doi.org/10.1016/j.rser.2014.09.040
- W. N. A. Kadir, M. K. Lam, Y. Uemura, J. W. Lim, and K. T. Lee, Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review, Energy Convers. Manag., 171, 1416-1429 (2018). https://doi.org/10.1016/j.enconman.2018.06.074
- N. M. Dang, and K. Lee, Decolorization of organic fertilizer using advanced oxidation process and its application for microalgae cultivation, J. Ind. Eng. Chem., 59, 297-303 (2018). https://doi.org/10.1016/j.jiec.2017.10.035
- S. A. Razzak, S. A. M. Ali, M. M. Hossain, and H. deLasa, Biological CO2 fixation with production of microalgae in wastewater - A review, Renew. Sust. Energ. Rev., 76, 379-390 (2017). https://doi.org/10.1016/j.rser.2017.02.038
- F. G. Acien, E. Molina, A. Reis, G. Torzillo, G. C. Zittelli, C. Sepulveda, and J. Masojidek, 1 - Photobioreactors for the production of microalgae, In: C. Gonzalez-Fernandez and R. Munoz (eds.). Microalgae-Based Biofuels and Bioproducts, 1-44, Woodhead Publishing, UK (2017).
- Y. Chisti, Large-Scale Production of Algal Biomass: Raceway Ponds, In: F. Bux and Y. Chisti (eds.). Algae Biotechnology: Products and Processes, Springer International Publishing, Cham, Switzerland (2016).
- A. F. Mohd Udaiyappan, H. Abu Hasan, M. S. Takriff, and S. R. Sheikh Abdullah, A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment, J. Water Process. Eng., 20, 8-21 (2017). https://doi.org/10.1016/j.jwpe.2017.09.006
- N. C. Boelee, H. Temmink, M. Janssen, C. J. N. Buisman, and R. H. Wijffels, Balancing the organic load and light supply in symbiotic microalgal-bacterial biofilm reactors treating synthetic municipal wastewater, Ecol. Eng., 64, 213-221 (2014). https://doi.org/10.1016/j.ecoleng.2013.12.035
- A. L. Goncalves, J. C. M. Pires, and M. Simoes, Wastewater polishing by consortia of Chlorella vulgaris and activated sludge native bacteria, J. Clean. Prod., 133, 348-357 (2016). https://doi.org/10.1016/j.jclepro.2016.05.109
- W. Y. Cheah, T. C. Ling, P. L. Show, J. C. Juan, J.-S. Chang, and D.-J. Lee, Cultivation in wastewaters for energy: A microalgae platform, Appl. Energy, 179, 609-625 (2016). https://doi.org/10.1016/j.apenergy.2016.07.015
- K. Katam, and D. Bhattacharyya, Simultaneous treatment of domestic wastewater and bio-lipid synthesis using immobilized and suspended cultures of microalgae and activated sludge, J. Ind. Eng. Chem., 69, 295-303 (2019). https://doi.org/10.1016/j.jiec.2018.09.031
- G. Mujtaba, M. Rizwan, and K. Lee, Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris, J. Ind. Eng. Chem., 49, 145-151 (2017). https://doi.org/10.1016/j.jiec.2017.01.021
- L. Evans, S. J. Hennige, N. Willoughby, A. J. Adeloye, M. Skroblin, and T. Gutierrez, Effect of organic carbon enrichment on the treatment efficiency of primary settled wastewater by Chlorella vulgaris, Algal Res., 24, 368-377 (2017). https://doi.org/10.1016/j.algal.2017.04.011
- J. Yang, Y. Gou, F. Fang, J. Guo, L. Lu, Y. Zhou, and H. Ma, Potential of wastewater treatment using a concentrated and suspended algal-bacterial consortium in a photo membrane bioreactor, Chem. Eng. J., 335, 154-160 (2018). https://doi.org/10.1016/j.cej.2017.10.149
- L. Wang, B. Zhong, T. Liang, B. Xing, and Y. Zhu, Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China, Sci. Total Environ., 572, 1-8 (2016). https://doi.org/10.1016/j.scitotenv.2016.07.192
- I. Rawat, R. Ranjith Kumar, T. Mutanda, and F. Bux, Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production, Appl. Energy, 88, 3411-3424 (2011). https://doi.org/10.1016/j.apenergy.2010.11.025
- C.-C. Tang, W. Zuo, Y. Tian, N. Sun, Z.-W. Wang, and J. Zhang, Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors, Bioresour. Technol, 222, 156-164 (2016). https://doi.org/10.1016/j.biortech.2016.09.123
- G. Mujtaba, M. Rizwan, G. Kim, and K. Lee, Removal of nutrients and COD through co-culturing activated sludge and immobilized Chlorella vulgaris, Chem. Eng. J., 343, 155-162 (2018). https://doi.org/10.1016/j.cej.2018.03.007
- Y. Shen, J. Gao, and L. Li, Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal, Bioresour. Technol, 243, 905-913 (2017). https://doi.org/10.1016/j.biortech.2017.07.041
- L. T. K. Vu, and K.-C. Loh, Symbiotic hollow fiber membrane photobioreactor for microalgal growth and bacterial wastewater treatment, Bioresour. Technol, 219, 261-269 (2016). https://doi.org/10.1016/j.biortech.2016.07.105
- M. Nayak, A. Karemore, and R. Sen, Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application, Algal Res., 16, 216-223 (2016). https://doi.org/10.1016/j.algal.2016.03.020
- Y. Wang, B. He, Z. Sun, and Y.-F. Chen, Chemically enhanced lipid production from microalgae under low sub-optimal temperature, Algal Res., 16, 20-27 (2016). https://doi.org/10.1016/j.algal.2016.02.022
- G. Najafi, B. Ghobadian, and T. F. Yusaf, Algae as a sustainable energy source for biofuel production in Iran: A case study, Renew. Sust. Energ. Rev., 15, 3870-3876 (2011). https://doi.org/10.1016/j.rser.2011.07.010
- A. Mahdy, L. Mendez, M. Ballesteros, and C. Gonzalez-Fernandez, Algaculture integration in conventional wastewater treatment plants: Anaerobic digestion comparison of primary and secondary sludge with microalgae biomass, Bioresour. Technol., 184, 236-244 (2015). https://doi.org/10.1016/j.biortech.2014.09.145
- D. L. Cheng, H. H. Ngo, W. S. Guo, S. W. Chang, D. D. Nguyen, and S. M. Kumar, Microalgae biomass from swine wastewater and its conversion to bioenergy, Bioresour. Technol., 275, 109-122 (2019). https://doi.org/10.1016/j.biortech.2018.12.019
- K. Larsdotter, Microalgae for Phosphorus Removal from Wastewater in a Nordic Climate, Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden (2006).
- M. P. Caporgno, A. Taleb, M. Olkiewicz, J. Font, J. Pruvost, J. Legrand, and C. Bengoa, Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane, Algal Res., 10, 232-239 (2015). https://doi.org/10.1016/j.algal.2015.05.011
- N. M. Dang, G. Kim, and K. Lee, Mixotrophic cultivation of marine alga Tetraselmis sp. using glycerol and its effects on the characteristics of produced biodiesel, Appl. Chem. Eng., 33, 222-228 (2022).
- T. Suganya, M. Varman, H. H. Masjuki, and S. Renganathan, Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach, Renew. Sust. Energ. Rev., 55, 909-941 (2016). https://doi.org/10.1016/j.rser.2015.11.026
- J. Trivedi, M. Aila, D. P. Bangwal, S. Kaul, and M. O. Garg, Algae based biorefinery-How to make sense?, Renew. Sust. Energ. Rev., 47, 295-307 (2015). https://doi.org/10.1016/j.rser.2015.03.052
- R. A. I. Abou-Shanab, M.-K. Ji, H.-C. Kim, K.-J. Paeng, and B.-H. Jeon, Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production, J. Environ. Manage., 115, 257-264 (2013). https://doi.org/10.1016/j.jenvman.2012.11.022
- H. Amini, L. Wang, and A. Shahbazi, Effects of harvesting cell density, medium depth and environmental factors on biomass and lipid productivities of Chlorella vulgaris grown in swine wastewater, Chem. Eng. Sci., 152, 403-412 (2016). https://doi.org/10.1016/j.ces.2016.06.025
- X. Deng, K. Gao, M. Addy, P. Chen, D. Li, R. Zhang, Q. Lu, Y. Ma, Y. Cheng, Y. Liu, and R. Ruan, Growing Chlorella vulgaris on mixed wastewaters for biodiesel feedstock production and nutrient removal, J. Chem. Technol. Biotechnol., 93, 2748-2757 (2018). https://doi.org/10.1002/jctb.5634
- J. J. Wang, Y. P. Han, J. Y. Chang, and Z. Y. Chen, Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model, J. Quant. Spectrosc. Radiat. Transf., 206, 22-30 (2018). https://doi.org/10.1016/j.jqsrt.2017.10.025
- Y. Wang, W. Guo, H.-W. Yen, S.-H. Ho, Y.-C. Lo, C.-L. Cheng, N. Ren, and J.-S. Chang, Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production, Bioresour. Technol., 198, 619-625 (2015). https://doi.org/10.1016/j.biortech.2015.09.067
- L. Zhu, Z. Wang, Q. Shu, J. Takala, E. Hiltunen, P. Feng, and Z. Yuan, Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment, Water Res., 47, 4294-4302 (2013). https://doi.org/10.1016/j.watres.2013.05.004
- C.-M. Kuo, T.-Y. Chen, T.-H. Lin, C.-Y. Kao, J.-T. Lai, J.-S. Chang, and C.-S. Lin, Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production, Bioresour. Technol., 194, 326-333 (2015). https://doi.org/10.1016/j.biortech.2015.07.026
- N. S. Shifrin, and S. W. Chisholm, Phytoplankton lipids: Interspecific differences and effects of nitrate, silicate and light-dark cycles, J. Phycol., 17, 374-384 (1981). https://doi.org/10.1111/j.0022-3646.1981.00374.x
- A. M. Illman, A. H. Scragg, and S. W. Shales, Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzyme Microb. Technol., 27, 631-635 (2000). https://doi.org/10.1016/S0141-0229(00)00266-0
- H. Wang, H. Xiong, Z. Hui, and X. Zeng, Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids, Bioresour. Technol., 104, 215-220 (2012). https://doi.org/10.1016/j.biortech.2011.11.020
- N. M. Dang, and K. Lee, Utilization of organic liquid fertilizer in microalgae cultivation for biodiesel production, Biotechnol. Bioprocess Eng., 23, 405-414 (2018). https://doi.org/10.1007/s12257-018-0081-3
- N. Xu, X. Zhang, X. Fan, L. Han, and C. Zeng, Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta), J. Appl. Phycol., 13, 463-469 (2001). https://doi.org/10.1023/A:1012537219198
- M. J. Griffiths, and S. T. L. Harrison, Lipid productivity as a key characteristic for choosing algal species for biodiesel production, J. Appl. Phycol., 21, 493-507 (2009). https://doi.org/10.1007/s10811-008-9392-7
- G. Kim, J. Bae, and K. Lee, Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp., Bioresour. Technol., 205, 274-279 (2016). https://doi.org/10.1016/j.biortech.2016.01.045
- D. Nhat Minh, and L. Kisay, Recycling of lipid-extracted algae cell residue for microorganisms cultivation and bioenergy production, Appl. Chem. Eng., 32, 487-496 (2021). https://doi.org/10.14478/ACE.2021.1076
- J. E. Keffer, and G. T. Kleinheinz, Use of Chlorella vulgaris for CO(2) mitigation in a photobioreactor, J. Ind. Microbiol. Biotechnol., 29, 275-280 (2002). https://doi.org/10.1038/sj.jim.7000313
- F. Guiheneuf, and D. B. Stengel, Towards the biorefinery concept: Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum, Algal Res., 10, 152-163 (2015). https://doi.org/10.1016/j.algal.2015.04.025
- M. S. Madeira, C. Cardoso, P. A. Lopes, D. Coelho, C. Afonso, N. M. Bandarra, and J. A. M. Prates, Microalgae as feed ingredients for livestock production and meat quality: A review, Livest. Sci., 205, 111-121 (2017). https://doi.org/10.1016/j.livsci.2017.09.020
- M. Rizwan, G. Mujtaba, S. A. Memon, K. Lee, and N. Rashid, Exploring the potential of microalgae for new biotechnology applications and beyond: A review, Renew. Sust. Energ. Rev., 92, 394-404 (2018). https://doi.org/10.1016/j.rser.2018.04.034
- A. Ajeej, J. V. Thanikal, C. M. Narayanan, and R. Senthil Kumar, An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper, Renew. Sust. Energ. Rev., 50, 270-276 (2015). https://doi.org/10.1016/j.rser.2015.04.121
- Z. Yaakob, E. Ali, A. Zainal, M. Mohamad, and M. S. Takriff, An overview: biomolecules from microalgae for animal feed and aquaculture, J. Biol. Res., 21, 6-6 (2014). https://doi.org/10.1186/2241-5793-21-6
- H. B. Goyal, D. Seal, and R. C. Saxena, Bio-fuels from thermochemical conversion of renewable resources: A review, Renew. Sust. Energ. Rev., 12, 504-517 (2008). https://doi.org/10.1016/j.rser.2006.07.014
- H. A. Alhashimi, and C. B. Aktas, Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis, Renew. Sust. Energ. Rev., 118, 13-26 (2017).
- K. L. Yu, B. F. Lau, P. L. Show, H. C. Ong, T. C. Ling, W.-H. Chen, E. P. Ng, and J.-S. Chang, Recent developments on algal biochar production and characterization, Bioresour. Technol, 246, 2-11 (2017). https://doi.org/10.1016/j.biortech.2017.08.009
- E. Marris, Black is the new green, Nature, 442, 624-626 (2006). https://doi.org/10.1038/442624a
- Y. Li, M. Horsman, N. Wu, C. Q. Lan, and N. Dubois-Calero, Biofuels from Microalgae, Biotechnol. Prog, 24, 815-820 (2008).
- S. Millao and E. Uquiche, Antioxidant activity of supercritical extracts from Nannochloropsis gaditana: Correlation with its content of carotenoids and tocopherols, J. Supercrit. Fluids, 111, 143-150 (2016). https://doi.org/10.1016/j.supflu.2016.02.002
- M. E. Gershwin, and A. Belay, Spirulina in Human Nutrition and Health, CRC Press, USA (2007).
- J. A. Del Campo, M. Garcia-Gonzalez, and M. G. Guerrero, Outdoor cultivation of microalgae for carotenoid production: current state and perspectives, Appl. Microbiol. Biotechnol., 74, 1163-1174 (2007). https://doi.org/10.1007/s00253-007-0844-9
- L. Barsanti and P. Gualtieri, Algae: Anatomy, Biochemistry, and Biotechnology, 2nd ed., CRC Press, USA (2014).
- A. Richmond, Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell, UK (2003).
- Y. P. Xie, S. H. Ho, C. Y. Chen, C. N. N. Chen, C. C. Liu, I. S. Ng, K. J. Jing, S. C. Yang, C. H. Chen, J. S. Chang, and Y. H. Lu, Simultaneous enhancement of CO2 fixation and lutein production with thermo-tolerant Desmodesmus sp. F51 using a repeated fed-batch cultivation strategy, Biochem. Eng. J., 86, 33-40 (2014). https://doi.org/10.1016/j.bej.2014.02.015
- B. Zhao, and Y. Su, Process effect of microalgal-carbon dioxide fixation and biomass production: A review, Renew. Sust. Energ. Rev., 31, 121-132 (2014). https://doi.org/10.1016/j.rser.2013.11.054
- Y. Jiang, W. Zhang, J. Wang, Y. Chen, S. Shen, and T. Liu, Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus, Bioresour. Technol, 128, 359-364 (2013). https://doi.org/10.1016/j.biortech.2012.10.119
- R. Verma, and A. Srivastava, Carbon dioxide sequestration and its enhanced utilization by photoautotroph microalgae, Environ. Dev., 27, 95-106 (2018). https://doi.org/10.1016/j.envdev.2018.07.004
- R. Verma, R. Kumar, L. Mehan, and A. Srivastava, Modified conventional bioreactor for microalgae cultivation, J. Biosci. Bioeng., 125, 224-230 (2018). https://doi.org/10.1016/j.jbiosc.2017.09.003
- W. Y. Cheah, P. L. Show, J.-S. Chang, T. C. Ling, and J. C. Juan, Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae, Bioresour. Technol., 184, 190-201 (2015). https://doi.org/10.1016/j.biortech.2014.11.026
- B. Wang, Y. Li, N. Wu, and C. Q. Lan, CO2 bio-mitigation using microalgae, Appl. Microbiol. Biotechnol., 79, 707-718 (2008). https://doi.org/10.1007/s00253-008-1518-y
- M. K. Lam, K. T. Lee, and A. R. Mohamed, Current status and challenges on microalgae-based carbon capture, Int. J. Green. Gas Control, 10, 456-469 (2012). https://doi.org/10.1016/j.ijggc.2012.07.010
- P. K. Kumar, S. V. Krishna, S. S. Naidu, K. Verma, D. Bhagawan, and V. Himabindu, Biomass production from microalgae Chlorella grown in sewage, kitchen wastewater using industrial CO2 emissions: Comparative study, Carbon Resour. Convers., 2, 126-133 (2019). https://doi.org/10.1016/j.crcon.2019.06.002
- I. Duran, F. Rubiera, and C. Pevida, Microalgae: Potential precursors of CO2 adsorbents, J. CO2 Util., 26, 454-464 (2018). https://doi.org/10.1016/j.jcou.2018.06.001
- K. A. Jung, S.-R. Lim, Y. Kim, and J. M. Park, Potentials of macroalgae as feedstocks for biorefinery, Bioresour. Technol., 135, 182-190 (2013). https://doi.org/10.1016/j.biortech.2012.10.025