• Title/Summary/Keyword: Energetic materials

Search Result 174, Processing Time 0.023 seconds

Materials and Electrochemistry: Present and Future Battery

  • Paul, Subir
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.115-131
    • /
    • 2016
  • Though battery chemistry and technology had been developed for over a hundred years back, increase in demand for storage energy, in the computer accessories, cell phones, automobile industries for future battery car and uninterrupted power supply, has made, the development of existing and new battery, as an emerging areas of research. With innovation of high energetic inexpensive Nano structure materials, a more energy efficient battery with lower cost can be competitive with the present primary and rechargeable batteries. Materials electrochemistry of electrode materials, their synthesis and testing have been explained in the present paper to find new high efficient battery materials. The paper discusses fundamental of electrochemistry in finding true cell potential, overvoltages, current, specific energy of various combinations of anode-cathode system. It also describes of finding the performance of new electrode materials by various experiments viz. i. Cyclic Voltammetry ii. Chronoamperometry iii. Potentiodynamic Polarization iv. Electrochemical Impedance Spectroscopy (EIS). Research works of different battery materials scientists are discussed for the development of existing battery materials and new nano materials for high energetic electrodes. Problems and prospects of a few promising future batteries are explained.

Study of 2-D laser heating with multiple beam profiles and ignition of energetic material (고에너지 빔 분포 형상을 고려한 폭약의 2-D 가열과 점화 연구)

  • Lee, Kyung-Cheol;Choi, Yoon-Soo;Kim, Hyung-Won;Choi, Jeong-Yeol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.51-54
    • /
    • 2008
  • Various types of beam distributions of high energy lasers are classified by the mode patterns. We study two dimensional laser initiation of confined energetic materials with multiple beam profiles.

  • PDF

Optical and Thermodynamic Modeling of the Interaction Between Long-range High-power Laser and Energetic Materials

  • Kisung Park;Soonhwi Hwang;Hwanseok Yang;Chul Hyun;Jai-ick Yoh
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.138-150
    • /
    • 2024
  • This study is essential for advancing our knowledge about the interaction between long-range high-power lasers and energetic materials, with a particular emphasis on understanding the response of a 155-mm shell under various surface irradiations, taking into account external factors such as atmospheric disturbances. The analysis addresses known limitations in understanding the use of non-realistic targets and the negligence of ambient conditions. The model employs the three-dimensional level-set method, computer-aided design (CAD)-based target design, and a message-passing interface (MPI) parallelization scheme that enables rapid calculations of the complex chemical reactions of the irradiated high explosives. Important outcomes from interaction modeling include the accurate prediction of the initiation time of ignition, transient pressure, and temperature responses with the location of the initial hot spot within the shell, and the relative magnitude of noise with and without the presence of physical ambient disturbances. The initiation time of combustion was increased by approximately a factor of two with atmospheric disturbance considered, while slower heating of the target resulted in an average temperature rise of approximately 650 K and average pressure increase of approximately 1 GPa compared to the no ambient disturbance condition. The results provide an understanding of the interaction between the high-power laser and energetic target at a long distance in an atmospheric condition.

Synthesis of Nickel Nanoparticle-adsorbed Aluminum Powders for Energetic Applications (니켈 나노입자가 흡착된 에너제틱용 고반응성 알루미늄 분말 합성)

  • Kim, Dong Won;Kwon, Gu Hyun;Kim, Kyung Tae
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.242-247
    • /
    • 2017
  • In this study, the electroless nickel plating method has been investigated for the coating of Ni nanoparticles onto fine Al powder as promising energetic materials. The adsorption of nickel nanoparticles onto the surface of Al powders has been studied by varying various process parameters, namely, the amounts of reducing agent, complexing agent, and pH-controller. The size of nickel nanoparticles synthesized in the process has been optimized to approximately 200 nm and they have been adsorbed on the Al powder. TGA results clearly show that the temperature at which oxidation of Al mainly occurs is lowered as the amount of Ni nanoparticles on the Al surface increases. Furthermore, the Ni-plated Al powders prepared for all conditions show improved exothermic reaction due to the self-propagating high-temperature synthesis (SHS) between Ni and Al. Therefore, Al powders fully coated by Ni nanoparticles show the highest exothermic reactivity: this demonstrates the efficiency of Ni coating in improving the energetic properties of Al powders.

A Study on Development of Reaction Rate Equation for Reactive Flow Simulation in Energetic Materials (고에너지 물질의 연소반응 해석을 위한 반응속도식 개발 및 정의에 관한 연구)

  • Kim, Bo-Hoon;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.47-57
    • /
    • 2012
  • A modified ignition and growth(I&G) model which is necessary to simulate the combustion phenomena of energetic materials and an analytical model determining the unknown parameters of the reaction rate equation are proposed. The modified I&G model sustains important physical implications with overcoming some problems of previous rate equations. This rate model consists of ignition term which represents the formation of the hotspot due to void collapse and growth term which means the shock to detonation transition phenomena. Also, the theoretical model is used to investigate the combustion characteristics of certain energetic materials before running Hydrocode by pre-determination of unknown parameter, $b,\;G,\;x,\;I$. The analytical model provides efficient and highly accurate results rather than previous method which simulated the unconfined-rate-stick via the numerical means.

A study on development of reaction rate equation for reactive flow simulation in energetic materials (고에너지 물질의 연소반응 해석을 위한 반응속도식 개발 및 정의에 관한 연구)

  • Kim, Bo-Hoon;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.331-341
    • /
    • 2012
  • A modified Ignition and Growth(I&G) model which is necessary to simulate the combustion phenomena of energetic materials and an analytical model determining the unknown parameters of the reaction rate equation are proposed. The modified I&G model sustains important physical implications with overcoming some problems of previous rate equations. This rate model consist of Ignition term which represent the formation of the hotspot due to void collapse and Growth term which means the shock to detonation transition phenomena. Also, the theoretical model is used to investigate the combustion characteristics of certain energetic materials before running Hydrocode by pre-determination of unknown parameter, b, G, x, I. The analytical model provides efficient and highly accurate results rather than previous method which simulated the unconfined-rate-stick via the numerical means.

  • PDF

Estimation of Aging Properties for Plastic Bonded Explosives Using AKTS Thermokinetic Software (AKTS Software를 이용한 주조형 복합화약의 노화 특성 예측)

  • Kwon, Kuktae;Lee, Sojung;Kim, Seunghee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.66-71
    • /
    • 2018
  • The evaluation of the shelf-life of energetic materials is important. However, there are several difficulties associated with the evaluation. First, aging experiments require a considerable amount of time. Second, treating highly energetic materials is dangerous. For these reasons, many evaluation methods have been developed. Because most energetic materials decompose with the evolution of heat, it is important to analyze the thermal properties of energetic materials in order to understand decomposition and aging properties. In this paper, we describe the estimation of thermal aging properties and develop a kinetic model from spot data set of mechanical properties and estimate aging properties for mechanical results.

The Characteristics Analysis and Manufacture of Metal Explosive(ZPP) on PMD (PMD용 금속화약(ZPP) 제조 및 특성분석)

  • Shim, Jungseob;Kim, Sangbaek;Ahn, Gilhwan;Kim, Junhyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.25-31
    • /
    • 2016
  • This research investigated the manufacturing process and characteristics analysis of ZPP(Zirconium Potassium Perchlorate) as pyrotechnic are commonly found in the aerospace, defense, and automotive industries. A solid pyrotechnic mixture is composed of an oxidizing agent, fuel, and binder. Precipitation process was used to uniformly mix the raw material. Through the analysis of the material characteristics and thermal response is designed optimum ratio by NASA CEA program. It was compared by performing the evaluation of these size, shape and calorimetry characteristics.

Reaction Characteristics Study of Aluminum-Copper(II) Oxide Composites Initiated by the Electrostatic Discharge (Aluminum-Copper(II) Oxide Composite의 정전기에 의한 반응 특성 연구)

  • Kim, Minjun;Kim, Sung Ho;Kim, Jayoung;Im, Yeseul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.591-598
    • /
    • 2018
  • The reaction characteristics of aluminum-copper(II) oxide composites initiated by the electrostatic discharge were studied as changing the aluminum particle size. Three different sizes of aluminum particles with nano-size copper(II)-oxide particle were used in the study. These composites were manufactured by two methods i.e. a shock-gel method and a self-assembly method. The larger aluminum particle size was, the less sensitive and less violent these composites were based on the electrostatic test. On the analysis of high speed camera about ignition appearances and burning time, the burning speed was faster when aluminum particle size was smaller.

The Characteristic Analysis and the Manufacture of Explosive THPP on PMD (PMD용 화약 THPP 제조 및 특성분석)

  • Kim, Sangbaek;Shim, Jungseob;Ahn, Gilhwan;Kim, Junhyung;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.84-89
    • /
    • 2016
  • THPP(Titanium Hydride Potassium Perchlorate) is an igniter composed of potassium perchlorate as oxidizing agent and titanium hydride as fuel with a Viton binder. THPP is commonly found in the aerospace, defence and automotive industries. This research is investigeted for the manufacturing process and characteristics analysis of the THPP such as the performance and shape/calorimetry/pressure characteristics of the THPP on PMD(Pyrotechnic Mechanical Device). Also, THPP composite ratio is designed by CEA program.