Browse > Article
http://dx.doi.org/10.5229/JECST.2016.7.2.115

Materials and Electrochemistry: Present and Future Battery  

Paul, Subir (Department of Metallurgical and Material Engineering Jadavpur University)
Publication Information
Journal of Electrochemical Science and Technology / v.7, no.2, 2016 , pp. 115-131 More about this Journal
Abstract
Though battery chemistry and technology had been developed for over a hundred years back, increase in demand for storage energy, in the computer accessories, cell phones, automobile industries for future battery car and uninterrupted power supply, has made, the development of existing and new battery, as an emerging areas of research. With innovation of high energetic inexpensive Nano structure materials, a more energy efficient battery with lower cost can be competitive with the present primary and rechargeable batteries. Materials electrochemistry of electrode materials, their synthesis and testing have been explained in the present paper to find new high efficient battery materials. The paper discusses fundamental of electrochemistry in finding true cell potential, overvoltages, current, specific energy of various combinations of anode-cathode system. It also describes of finding the performance of new electrode materials by various experiments viz. i. Cyclic Voltammetry ii. Chronoamperometry iii. Potentiodynamic Polarization iv. Electrochemical Impedance Spectroscopy (EIS). Research works of different battery materials scientists are discussed for the development of existing battery materials and new nano materials for high energetic electrodes. Problems and prospects of a few promising future batteries are explained.
Keywords
Future Batteries; Exiting Battery Materials; Nano Electrodes Materials; Electrochemical Characterization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Paul and P. Mondal, Int. Energy J., 2006, 7, 221-225.
2 S. Paul and P. Mondal, J. Inst. Eng. Interdiscip., 2009, 90, 40-45.
3 S, Paul, Namomaterials and Energy, 2015, 4, 1-9.
4 S. K. Guchhait and S. Paul, International Conference on Energy, Environment and Economics "ICEEE2016" Conference, Edinburgh, UK, August 16-18, 2016.
5 Y. Idota, T. Kabuto, A. Matsufuji, Y. Maekawa and T. Miyasaki, Science, 1997, 276, 1395-1397.   DOI
6 O. Mao and J. R. Dahn, J. Electrochem. Soc., 1999, 146, 423-427.   DOI
7 L. Y. Beaulieu and J. R. Dahn, J. Electrochem. Soc., 2000, 147, 3237-3241.   DOI
8 G. X. Wang, J. H. Ahn, J. Yao, S. Bewlay and H. K. Liu, Electrochem. Commun., 2004, 6, 689-692.   DOI
9 H. Kim and J. Cho, J. Electrochem. Soc., 2007, 154, A462-A466.   DOI
10 N. Jayaprakash, N. Kalaiselvi and C. H. Doh, J. Appl. Electrochem., 2007, 37, 567-573.   DOI
11 Y. Wang, F. Su, J. Y. Lee and X. S. Zhao, Chem. Mater., 2006, 18, 1347-1353.   DOI
12 X. W. Lou, Y. Wang, C. Yuan. J. Y. Lee and L. A. Archer, Adv. Mater., 2006, 18, 2325-2329.   DOI
13 H. Kim and J. Cho, Chem. Mater., 2008, 20, 1679-1681.   DOI
14 S.-W. Kim, M. Kim, W. Y. Lee and T. Hyeon, J. Am. Chem. Soc., 2002, 124, 7642-7643.   DOI
15 M. Yang, J. Ma, C. Zhang, Z. Yang and Y. Lu, Angew. Chem. Int. Ed., 2005, 44, 6727-6730.   DOI
16 J. Gao, B. Zhang, X. Zhang and B. Xu, Angew. Chem. Int. Ed., 2006, 45, 1220.   DOI
17 Y. Wang, J. Y. Lee and H. C. Zeng, Chem. Mater., 2005, 17, 3899-3903.   DOI
18 Y. Wang, H. C. Zeng and J. Y. Lee, Adv. Mater., 2006, 18, 645-649.   DOI
19 W.-M. Zhang, J.-S. Hu, Y-G. Guo, S.-F. Zheng, L.-S. Zhong, W-G. Song and L.-J. Wan, Adv. Mater., 2008, 20, 1160-1165.   DOI
20 J. F. Rohan, M. Hasan and N. Holubowitch, Electrochim. Acta, 2011, 56, 9537-9541.   DOI
21 Y. Wang, J. Y. Lee and H. C. Zeng, Chem. Mater., 2005, 17, 3899-3903.   DOI
22 C. J. Patrissi and C. R. Martin, J. Electrochem. Soc., 1999, 146, 3176-3180.   DOI
23 C. R. Sides and C. R. Martin, Adv. Mater., 2005, 17, 125-128.   DOI
24 M. A. Reddy, M. Fichtner, J. Mater. Chem., 2011, 21, 17059-17062.   DOI
25 C. Rongeat, M. A. Reddy, R. Witter and M. Fichtner, ACS Appl. Mater. Interfaces, 2014, 6, 2103-2110.   DOI
26 C. Rongeat, M. A. Reddy, T. Diemant, R. J. Behm, M. Fichtner, J. Mater. Chem. A, 2014, 2, 20861-20872.   DOI
27 Zh. Zhao-Karger, X. Zhao, O. Fuhr, M. Fichtner, J. Power Sources, 2014, 245, 706-711.   DOI
28 I. V. Murin, O. V. Glumov and N. A. Mel’nikova, Russ. J. Electrochem., 2009, 45, 411-416.   DOI
29 N. Imanaka, K. Okamoto and G. Adachi, Angew. Chem. Int. Ed., 2002, 41, 3890-3892.   DOI
30 K. Yamada, Y. Kuranaga, K. Ueda, S. Goto, T. Okuda and Y. Furukawa, Bull. Chem. Soc. Jpn., 1998, 71, 127-134.   DOI
31 Z. Zhao-Karger, X. Zhao, D. Wang, T. Diemant, R. J. Behm, and M. Fichtner, Adv. Energy Mater., 2015, 5, 1401155.   DOI
32 T. J. Carter, R. Mohtadi, T. S. Arthur, F. Mizuno, R. Zhang, S. Shirai and J. W. Kampf, Angew. Chem. Int. Ed., 2014, 53, 3173-3177.   DOI
33 P. Bian, Y. NuLi, Z. Abudoureyimu, J. Yang and J. Wang, Electrochim. Acta, 2014, 121, 258-263.   DOI
34 P.-W. Bian, Y.-N. Nuli, Zainapuguli, J. Yang and J.-L. Wang, Acta Physico-Chimica Sinica, 2014, 30, 311-317.
35 C.-Y. Yu, J.-S. Park, H.-G. Jung, K.-Y. Chung, D. Aurbach, Y.-K. Sun and S.-K. Myung, Energy Environ. Sci., 2015, 8, 2019-2026.   DOI
36 Y. Dong, S. Li, K. Zhao, C. Han, W. Chen, B. Wang, L. Wang, B. Xu, Q. Wei, L. Zhang, X. Xu and L. Mai, Energy Environ. Sci., 2015, 8, 1267-1275.   DOI
37 M. Reynaud, G. Rousse, A. M. Abakumov, M. T. Sougrati, G. Van Tendeloo, J.-N.Chotard and J.-M.Tarascon, J. Mater. Chem. A, 2014, 2, 2671-2680.   DOI
38 P. Barpanda, G. Oyama, C. D. Ling and A. Yamada, Chem. Mater., 2014, 26, 1297-1299.   DOI
39 D. A. Stevens and J. R. Dahn, J. Electrochem. Soc., 2001, 148, A803-A811.   DOI
40 Y.-X. Wang, S.-L. Chou, H.-K. Liu and S.-X. Dou, Carbon, 2013, 57, 202-208.   DOI
41 Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L.V. Saraf, Z. Yang and J. Liu, Nano lett., 2012, 12, 3783-3787.   DOI
42 S. Paul and R. Chatterjee, Namomaterials and Energy, 2015, 4, 64-72.   DOI
43 K. Tang, L. Fu, R. J. White, L. Yu, M.-M.Titirici, M. Antonietti and J. Maier, Adv. Energy Mater., 2012, 2, 873-877.   DOI
44 Y. Xu, Y. Zhu, Y. Liu, C. Wang, Adv. Energy Mater., 2013, 3, 128-133.   DOI
45 S. Paul, Sk Naimuddin and A. Ghosh, J. Fuel Chem. & Tech., 2014, 42(1), 87-95.   DOI
46 S. Paul and Sk Naimuddin, J. Fuel Cell Sci. Technol., 2015, 12, 011007.   DOI
47 S. Paul and A. Ghosh, J. Fuel Cell Sci. Technol., 2015, 43, 344-351.
48 S. Paul, J. Fuel Cell Sci. Technol., 2012, 9, 021013.   DOI
49 S. K. Guchhait and S. Paul, J. Fuel Cell Sci. Technol., 2015, 43, 1004-1010.
50 Y. S. Hu, L. Kienle, Y.-G. Guo and J. Maier, Adv. Mater., 2006, 18, 1421-1426.   DOI
51 E. M. Sorensen, S. J. Barry, H.-K. Jung, J. R. Rondinelli, J. T. Vaughey and K. R. Poeppelmeier, Chem. Mater., 2006, 18, 482-489.   DOI
52 A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda and P. M. Ajayan, Nano Lett., 2009, 9, 1002-1006.   DOI
53 K. Zhong, X. Xia, B. Zhang, H. Li, Z. Wang and L. Chen, J. Power Sources, 2010, 195, 3300-3308.   DOI
54 J. Gao, M. A. Lowe and H. D. Abruna, Chem. Mater., 2011, 23, 3223-3227.   DOI
55 Y. Qiu, G.-L. Xu, K. Yan, H. Sun, J. Xiao, S. Yang, S.-G. Sun, L. Jin and H. Deng, J. Mater. Chem., 2011, 21, 6346-6353.   DOI
56 W.-M. Zhang, X.-L. Wu, J.-S. Hu, Y.-G. Guo and L.-J. Wan, Adv. Funct. Mater., 2008, 18, 3941-3946.   DOI
57 M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. Subba Rao and B. V. R. Chowdari, Adv. Funct. Mater., 2007, 17, 2792-2799.   DOI
58 Y.-M. Kang, M.-S. Song, J.-H. Kim, H.-S. Kim, M.-S. Park, J.-Y. Lee, H. K. Liu and S. X. Dou, Electrochim. Acta, 2005, 50, 3667-3673.   DOI
59 H. Liu, G. Wang, J. Liu, S. Qiao and H. Ahn, J. Mater. Chem., 2011, 21, 3046-3052.   DOI
60 X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee and L. A. Archer, Adv. Mater., 2006, 18, 2325-2329.   DOI
61 J. S. Chen and X. W. Lou, Small, 2013, 9, 1877-1893.   DOI
62 I. A. Courtney and J. R. Dahn, J. Electrochem. Soc., 1997, 144, 2045-2052.   DOI
63 X. Zhou, L. J.Wan and Y. G. Guo, Adv. Mater., 2013, 25, 2152-2157.   DOI
64 X. Wang, X. Cao, L. Bourgeois, H. Guan, S. Chen, Y. Zhong, D.-M. Tang, H. Li, T. Zhai, L. Li, Y. Bando and D. Golberg, Adv. Funct. Mater., 2012, 22, 2682-2690.   DOI
65 J. M. Morris, S. Jin, J. Wang, C. Zhu and M. A. Urynowicz, Electrochem. Commun., 2007, 9, 1730-1734.   DOI
66 S.-M. Paek, E.-J. Yoo and I. Honma, Nano Lett., 2009, 9, 72-75.   DOI
67 H.-X. Zhang, C. Feng, Y.-C. Zhai, K.-L. Jiang, Q.-Q. Li and S.-S. Fan, Adv. Mater., 2009, 21, 2299-2304.   DOI
68 S. Cheng, H. Liu and B. E. Logan, Environ. Sci. Technol., 2006, 40, 2426-2432.   DOI
69 Y. Li, A. Lu, H. Ding, S. Jin, Y. Yan, C. Wang, C. Zen and X. Wang, Electrochem. Commun., 2009, 11, 1496-1499.   DOI
70 D. Das, P. K. Sen and K. Das, J. Appl. Electrochem., 2006, 36, 685-690.   DOI
71 S. Paul and A. Ghosh, Energy and Environment Focus, 2016, 5(1), 6-12.   DOI
72 S. Paul and Sk Naimuddin, A. Ghosh, J. Fuel Cell Sci. Technol., 2014, 42, 87-95.
73 S. Paul and Sk Naimuddin, J. Fuel Cell Sci. Technol., 2015, 12, 011007.   DOI
74 M. A. Scibioh, S.-K. Kim, E. A. Cho, T.-H. Lim, S.-A. Hong and H. Y. Ha, Appl. Catal. B, 2008, 84, 773-782.   DOI
75 C. L. Perkins, M. A. Henderson, C. H. F. Peden and G. S. Herman, J. Vac. Sci. Technol. A, 2001, 19, 1942-1946.
76 Y. Zhou, Y. Gao, Y. Liu and J. Liu, J. Power Sources, 2010, 195, 1605-1609.   DOI
77 C. L. Campos, C. Roldan, M. Aponte, Y. Ishikawa and C. R. Cabrera, J. Elcetroanal. Chem., 2005, 581, 206-215.   DOI
78 S. Paul, A. Jana and P. K. Mitra, J. Inst. Eng. Interdisciplinary Div., 2007, 88, 27-30.