• 제목/요약/키워드: Endoglucanase activity

검색결과 59건 처리시간 0.023초

Degradation of Crystalline Cellulose by the Brown-rot Basidiomycete Fomitopsis palustris

  • Yoon Jeong-Jun;Kim Young-Kyoon
    • Journal of Microbiology
    • /
    • 제43권6호
    • /
    • pp.487-492
    • /
    • 2005
  • This study demonstrated that the brown rot basidiomycete Fomitopsis palustris was able to degrade crystalline cellulose (Avicel). This fungus could also produce the three major cellulases (exoglucanases, endoglucanases, and $\beta-glucosidase$) when the cells were grown on $2.0\%$ Avicel. Avicel degraded by F. palustris showed a decrease in relative crystallinity from $83\%\;to\;78.5\%$ after 14 days of incubation. The characterization study indicated that optimum pH was 4.5 and optimum temperature was $70^{\circ}C$ for exoglucanase (cellobiohydrolase) activity. Hydrolysis of Avicel by the crude enzyme from F. palustris yielded 1.6 mg/ml of glucose after 43 h, which corresponded to a cellulose conversion degree of $3.2\%$. Therefore, this study revealed for the first time that the brown rot basidiomycete F. palustris produces cellulases capable of yielding soluble sugars from crystalline cellulose.

Enhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression

  • Yang, Fan;Gong, Yanfen;Liu, Gang;Zhao, Shengming;Wang, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1101-1107
    • /
    • 2015
  • The role of CRE1 in a thermophilic fungus, Myceliophthora thermophila ATCC42464, was studied using RNA interference. In the cre1-silenced strain C88, the filter paper hydrolyzing activity and β-1,4-endoglucanase activity were 3.76-, and 1.31-fold higher, respectively, than those in the parental strain when the strains were cultured in inducing medium for 6 days. The activities of β-1,4-exoglucanase and cellobiase were 2.64-, and 5.59-fold higher, respectively, than those in the parental strain when the strains were cultured for 5 days. Quantitative reverse-transcription polymerase chain reaction showed that the gene expression of egl3, cbh1, and cbh2 was significantly increased in transformant C88 compared with the wild-type strain. Therefore, our findings suggest the feasibility of improving cellulase production by modifying the regulator expression, and an attractive approach to increasing the total cellulase productivity in thermophilic fungi.

Characterization of Xylanase from Lentinus edodes M290 Cultured on Waste Mushroom Logs

  • Lee, Jae-Won;Gwak, Ki-Seob;Kim, Su-Il;Kim, Mi-Hyang;Choi, Don-Ha;Choi, In-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권11호
    • /
    • pp.1811-1817
    • /
    • 2007
  • Extracellular enzymes from Lentinus edodes M290 on normal woods (Quercus mongolica) and waste logs from oak mushroom production were comparatively investigated. Endoglucanase, cellobiohydrolase, ${\beta}$-glucosidase, and xylanase activities were higher on waste mushroom logs than on normal woods after 1. edodes M290 inoculation. Xylanase activity was especially different, with a three times higher activity on waste mushroom logs. When the waste mushroom logs were used as a carbon source, a new 35 kDa protein appeared. After the purification, the optimal pH and temperature for xylanase activity were determined to be 4.0 and $50^{\circ}C$, respectively. More than 50% of the optimal xylanase activity was retained when the temperature was increased from 20 to $60^{\circ}C$, after a 240 min reaction. At $40^{\circ}C$, the xylanase maintained 93% of the optimal activity, after a 240 min reaction. The purified xylanase showed a very high homology to the xylanase family 10 from Aspergillus terreus by LC/MS-MS analysis. The highest Xcorr (1.737) was obtained from the peptide KWI SQGIPIDGIG SQTHLGSGGS WTVK originated from Aspergillus terreus, indicating that the 35 kDa protein was xylanase. This protein showed low homology to a previously reported L. edodes xylanase sequence.

목질섭식곤충의 장내 세균 다양성 분석 및 섬유소 분해균 탐색 (Analysis of gut bacterial diversity and exploration of cellulose-degrading bacteria in xylophagous insects)

  • 최민영;안재형;송재경;김성현;배진우;원항연
    • 미생물학회지
    • /
    • 제51권3호
    • /
    • pp.209-220
    • /
    • 2015
  • 목질 섭식 곤충에 관한 장내 세균 군집의 연구를 이용한 lignocellulose의 분해는 생명 공학적 응용에 있어 큰 잠재력을 갖는다. 본 연구에서 목질 섭식 곤충의 장내 세균 군집은 16S rRNA 유전자를 기반으로 한 파이로시퀀싱 방법을 이용하여 분석되었다. 분석된 모든 곤충에서 중장보다 후장에서 OTU수, 종 풍부도, 다양성 지수가 높았다. 세균 문 또는 강 수준의 다양성을 분석한 결과, 흰개미를 제외한 곤충의 장내 군집에는 Firmicutes, Bacteroidetes, ${\gamma}-Proteobacteria$가 우점하였다. PCoA (principal coordinates analysis)를 이용하여 세균의 군집 구조를 분석한 결과, 서식지보다는 곤충의 과별로 클러스터링 되는 경향이었다. CMC 분해 활성이 가장 높은 두 균주는 Bacillus toyonensis $BCT-7112^T$와 Lactococcus lactis subsp. hordniae $NCDO\;2181^T$과 유연관계가 높았다. 장 적출물의 섬유소 분해활성 실험 결과, 하늘소 후장에서 ${\beta}-1,4-glucosidase$, ${\beta}-1,4-endoglucanase$, ${\beta}-1,4-xylanase$의 효소활성이 가장 높았다. 본 연구에서는 목질 섭식 곤충의 장내에 다양하고 풍부한 세균이 서식하며, 섬유소를 분해하는 세균이 존재한다는 사실을 확인하였고, 이로부터 다양하고 유용한 섬유소 분해균을 분리할 수 있을 것으로 판단되었다.

Optimization of ${\beta}$-Glucosidase Production by a Strain of Stereum hirsutum and Its Application in Enzymatic Saccharification

  • Ramachandran, Priyadharshini;Nguyen, Ngoc-Phuong-Thao;Choi, Joon-Ho;Kang, Yun Chan;Jeya, Marimuthu;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.351-356
    • /
    • 2013
  • A high ${\beta}$-glucosidase (BGL)-producing strain, Stereum hirsutum, was identified and isolated and showed a maximum BGL activity (10.4 U/ml) when cultured with Avicel and tryptone as the carbon and nitrogen sources, respectively. In comparison with other BGLs, BGL obtained from S. hirsutum showed a higher level of activity to cellobiose ($V_{max}$ = 172 U/mg, and $k_{cat}$ = 281/s). Under the optimum conditions (600 rpm, $30^{\circ}C$, and pH 6.0), the maximum BGL activity of 10.4 U/ml with the overall productivity of 74.5 U/l/h was observed. BGL production was scaled up from a laboratory scale (7-L fermenter) to a pilot scale (70-L fermenter). When S. hirsutum was cultured in fed-batch culture with rice straw as the carbon source in a 70-L fermenter, a comparable productivity of 78.6 U/l/h was obtained. Furthermore, S. hirsutum showed high levels of activity of other lignocellulases (cellobiohydrolase, endoglucanase, xylanase, and laccase) that are involved in the saccharification of biomasses. Application of S. hirsutum lignocellulases in the hydrolysis of Pinus densiflora and Catalpa ovata showed saccharification yields of 49.7% and 43.0%, respectively, which were higher than the yield obtained using commercial enzymes.

Characterization and Action Patterns of Two ${\beta}$-1,4-Glucanases Purified from Cellulomonas uda CS1-1

  • Yoon, Min-Ho;Choi, Woo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1291-1299
    • /
    • 2007
  • Two ${\beta}$-1,4-glucanases (DI and DIII fractions) were purified to homogeneity from the culture filtrate of a cellulolytic bacteria, Cellulomonas sp. CS 1-1, which was classified as a novel species belonging to Cellulomonas uda based on chemotaxanomic and phylogenetic analyses. The molecular mass was estimated as 50,000 Da and 52,000 Da for DI and DIII, respectively. Moreover, DIII was identified as a glycoprotein with a pI of 3.8, and DI was identified as a non-glycoprotein with a pI of 5.3. When comparing the ratio of the CMC-saccharifying activity and CMC-liquefying activity, DI exhibited a steep slope, characteristic of an endoglucanase, whereas DIII exhibited a low slope, characteristic of an exoglucanase. The substrate specificity of the purified enzymes revealed that DI efficiently hydrolyzed CMC as well as xylan, whereas DIII exhibited a high activity on microcrystalline celluloses, such as Sigmacells. A comparison of the hydrolysis patterns for pNP-glucosides (DP 2-5) using an HPLC analysis demonstrated that the halosidic bond 3 from the nonreducing end was the preferential cleavage site for DI, whereas bond 2, from which the cellobiose unit is split off, was the preferential cleavage site for DIII. The partial N-terminal amino acid sequences for the purified enzymes were $^1Ala-Gly-Ser-Thr-Leu-Gln-Ala-Ala-Ala-Ser-Glu-Ser-Gly-Arg-Tyr^{15}$-for DI and $^1Ala-Asp-Ser-Asp-Phe-Asn-Leu-Tyr-Val-Ala-Glu-Asn-Ala-Met-Lys^{15}$-for DIII. The apparent sequences exhibited high sequence similarities with other bacterial ${\beta}$-1,4-glucanases as well as ${\beta}$-1,4-xylanases.

종이의 산성화가 미생물의 분해능에 미치는 영향 (Effect of the paper acidity on the cellulolytic activity of fungi)

  • 한성희;이규식;정용재;이혜윤
    • 보존과학연구
    • /
    • 통권19호
    • /
    • pp.3-22
    • /
    • 1998
  • The effect of pH on degradation of paper by some fungi, which able to degrade cellulose, was investigated. Trichoderma koningii, Aspergillus nigerand Penicillium nigulosum were cultured at $28^{\circ}C$ for 16 days in the selective medium (PH3, PH4, PH5, PH6, PH7, PH8, PH9, PH10, PHC) containing paper as substrate. Each paper was pretreated with each pH buffer (pH 3∼pH 10, D.W.)prior to addition to the selective medium. Enzyme activities in the each culture medium were measured spectroph to metrically using C.M.C., Avicel, PNPG as the substrates for endoglucanase, exoglucanase and $\beta$-glucosidase, respectively. In all experimental fungi, the enzyme activities of PH3 and PH9 medium were usually much higher than those of other experimental groups. However in the PH6medium, enzyme activity was lower than other groups. To analyze the concentration and pattern of protein in the each culture medium, the medium was concentrated by lyophilization. The protein concentration of PH3 and PH9 medium were relatively high (T.koningii; 6.31mg, 6,19mg, A.niger; 1.62mg, 1.96mg, P.nigulosum;2.50mg, 2.73mg, respectively), but that of PH6 was relatively low. The protein pattern of each medium was analyzed by using SDS-PAGE and VDS Image Master Analysis Program. The concentrations of bands in the each lane were usually high at lane2 (PH3) and lane8 (PH9) and low at lane5 (PH6). Therefore, the incresed cellulolytic activity of fungus against acidified paper could be result of structural change and deterioration of paper caused by being acidified.

  • PDF

대장균에서 발현되는 Clostridium thermocellum의 섬유소 분해 효소의 특성 (Properties of a Novel Clostridiclm thermocellum Endo-$\beta$-1,4-glucanase Expressed in Escherichia coli)

  • 정경화;이진호;이용택;김하근;박무영
    • 한국미생물·생명공학회지
    • /
    • 제20권5호
    • /
    • pp.505-510
    • /
    • 1992
  • 고온성 혐기성 세균인 Clostridium thermocellum의 섬유소 분해 효소 유전자를 pUC9 플라스미드를 이용하여 대장균에 클로닝하였고, 지금까지 클로닝 된 C.thermocellum의 섬유소 분해 유전자들과 제한효소 양상을 비교하여 새로운 유전자임을 알 수 있었다. 대장균에서 섬유소 분해 효소를 열처리와 column chromatography에 의해서 정제를 하였고, 분자량은 40, 000이었다. 이 효소는 pH 5.0과 $65^{\circ}C$에서 CMC에 대해서 최대 활성을 보였고 최종 산물인 포도당과 cellobiose에 의한 활성의 저해는 크게 나타나지 않았다. CMC에 대한 이 효소의 $K_{m}$$V_{max}$값은 각각 0.39(w/v)와 268 U/mg protein이었다.

  • PDF

A Novel Cellulase of the Mulberry Longicorn Beetle, Apriona germari, Dependent on N-Glycosylation for Enzymatic Activity

  • Lee, Seong-Jin;Kim, Seong-Ryul;Yoon, Hyung-Joo;Kim, IK-Soo;Lee, Kwang-Sik;Je, Yeon-Ho;Lee, Sang-Mong;Seo, Sook-Jae;Sohn, Hung-Dae;Jin, Byung-Rae
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 제46회 춘계 학술연구 발표회
    • /
    • pp.77-78
    • /
    • 2003
  • A novel -1, 4-endoglucanase (EGase, EC 3.2.1.4) cDNA belonging to glycoside hydrolase family (GHF) 45 was cloned from the mulberry longicorn beetle, Apriona germari. The cDNA encoding EGase of A. germari (Ag-EGase) is 711 base pairs long with an open reading frame of 237 amino acid residues. The deduced protein sequence of Ag-EGase showed 54% and 48% identity to phytophagous beetle Phaedon cochleariae and termite Reticulitermes speratus hindgut symbiont, respectively. (omitted)

  • PDF

Apolar growth of Neurospora crassa leads to increased secretion of extracellular proteins

  • Lee, In-Hyung;Rodney G. Walline;Michael Plamann
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2000년도 Proceedings of 2000 KSAM International Symposium and Spring Meeting
    • /
    • pp.78-89
    • /
    • 2000
  • Protein secretion in filamentous fungi has been shown to be restricted to actively growing hyphal tips. To determine whether an increase in the amount of growing surface area of a fungus can lead to an increase in the amount of protein secretion, we examined secretion in a temperature-sensitive Neurospora crassa mcb mutant that shows a loss of growth polarity when incubated at restrictive-temperature. Incubation of the mcb mutant at restrictive-temperature results in a three- to five-fold increase in the level of extracellular protein and a 20- fold increase in carboxymethyl cellulase activity relative to a wild-type strain. A mutation in the cr-l gene has been shown previously to suppress the apolar growth phenotype of the mcb mutant, and we find that the level of extracellular protein produced by a mcb; cr-l double mutant was reduced to that of the wild-type control. Immunolocalization of a secreted endoglucanase revealed that proteins are secreted mainly at hyphal tips in hyphae exhibiting polar growth and over the entire surface area of bulbous regions of hyphae that are produced following a shift of the mcb mutant to restrictive-temperature. These results support the hypothesis that secretion of extracellular protein by a filamentous fungus can be significantly increased by mutations that alter growth polarity.

  • PDF