Degradation of Crystalline Cellulose by the Brown-rot Basidiomycete Fomitopsis palustris

  • Yoon Jeong-Jun (Department of Forest Products, College of Forest Science, Kookmin University) ;
  • Kim Young-Kyoon (Department of Forest Products, College of Forest Science, Kookmin University)
  • Published : 2005.12.01

Abstract

This study demonstrated that the brown rot basidiomycete Fomitopsis palustris was able to degrade crystalline cellulose (Avicel). This fungus could also produce the three major cellulases (exoglucanases, endoglucanases, and $\beta-glucosidase$) when the cells were grown on $2.0\%$ Avicel. Avicel degraded by F. palustris showed a decrease in relative crystallinity from $83\%\;to\;78.5\%$ after 14 days of incubation. The characterization study indicated that optimum pH was 4.5 and optimum temperature was $70^{\circ}C$ for exoglucanase (cellobiohydrolase) activity. Hydrolysis of Avicel by the crude enzyme from F. palustris yielded 1.6 mg/ml of glucose after 43 h, which corresponded to a cellulose conversion degree of $3.2\%$. Therefore, this study revealed for the first time that the brown rot basidiomycete F. palustris produces cellulases capable of yielding soluble sugars from crystalline cellulose.

Keywords

References

  1. Beguin, P. and J.P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25-58 https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  2. Bhattacharjee, B., A. Roy, and A.L. Majumder. 1993. Carboxymethylcellulase from Lenzites saepiaria, a brown-rotter. Biochem. Mol. Biol. Int. 30, 1143-1152
  3. Biely, P., O. Markovic, and D. Mislovicova. 1985. Sensitive detection of endo-1,4-$\beta$-glucanases and endo-1,4-$\beta$-xylanases in gels. Anal. Biochem. 144, 147-151 https://doi.org/10.1016/0003-2697(85)90096-X
  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Buschle-Diller, G. and S.H. Zeronian. 1992. Enhancing the reactivity and strength of cotton fibers. J. Appl. Poly. Sci. 45, 967-979 https://doi.org/10.1002/app.1992.070450604
  6. Buschle-Diller, G. and S.H. Zeronian. 1994. Enzymatic and acid hydrolysis of cotton cellulose after slack and tension mercerization. Text. Chem. Color. 26, 17-24
  7. Claeyssens, M., H. van tilbeurgh, P. Tomme, T.M. Wood, and I. McCrae. 1989. Fungal cellulase systems. Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem. J. 261, 819-826 https://doi.org/10.1042/bj2610819
  8. Cohen, R., K.A. Jesen, C.J. Jr. Houtman, and K.E. Hammel. 2002. Significant levels of extracellular reactive oxygen species produced produced by brown rot basidiomycetes on cellulose. FEBS Lett. 531, 483-488 https://doi.org/10.1016/S0014-5793(02)03589-5
  9. Cohen, R., M. Suzuki, and K.E. Hammel. 2005. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 71, 2412-2417 https://doi.org/10.1128/AEM.71.5.2412-2417.2005
  10. Eriksson, K.-E., R.A. Blanchette, and P. Ander. 1990. Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg, New York
  11. Eriksson, K.-E. and B. Pettersson. 1975. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose 1. Separation, purification and physic-chemical characterization for five endo-1,4-$\beta$-glucanases. Eur. J. Biochem. 51, 193-206 https://doi.org/10.1111/j.1432-1033.1975.tb03919.x
  12. Gilbertson, R.L. and L. Ryvarden. 1986. North American polypores. Fungiflora, Oslo, Norway
  13. Green, III F. and T.L. Highley. 1997. Mechanism of brown-rot decay: Paradigm or paradox. Inter. Biodeter. Biodegrad. 39, 113-124 https://doi.org/10.1016/S0964-8305(96)00063-7
  14. Gusakov, A.V., A.P. Sinitsyn, T.V. Salanovich, F.E. Bukhtojarov, A.V. Markov, B.B. Ustinov, C. van Zeijl, P. Punt, and R. Burlingame. 2005. Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enzyme Microb. Technol. 36, 57-69 https://doi.org/10.1016/j.enzmictec.2004.03.025
  15. Han, M.-J., H.-T. Choi, and H.-G. Song. 2004. Degradattion of phenanthrene by Trametes versicolor and its laccase. J. Microbiol. 42, 94-98
  16. Henrissat, B. 1993. Hidden domains and active site residues in bglycanase-encoding gene sequences. Gene 125, 199-204 https://doi.org/10.1016/0378-1119(93)90329-2
  17. Henrissat, B. and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781-788 https://doi.org/10.1042/bj2930781
  18. Henrissat, B. and G. Davies. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637-644 https://doi.org/10.1016/S0959-440X(97)80072-3
  19. Herr, D., F. Baumer, and H. Dellweg. 1978. Purification and properties of an extracellular endo-1,4-$\beta$-glucanase from Lenzites trabea. Applied Microbiol. Biotechnol. 5, 29-36 https://doi.org/10.1007/BF00515684
  20. Ishihara, M. and K. Shimizu. 1984. Purification and properties of two extracellular endo-cellulases from the brown rotting fungus Tyromyces palustris. Mokkuzai Gakkaishi 30, 79-87
  21. Keilich, P., P.J. Bailey, E.G. Afting, and W. Liese. 1969. Cellulase from the wood-degrading fungus Polylorus schweinitzii fr. Biochim. Biophys. Acta 185, 392-401 https://doi.org/10.1016/0005-2744(69)90432-X
  22. Kerem, Z., K.A. Jensen, and K.E. Hammel. 1999. Biodegradative mechanism of the brown rot basidiomycete Gleophyllum trabeum: evidence for an extracellular hydroquinone-driven fenton reaction. FEBS Lett. 446, 49-54 https://doi.org/10.1016/S0014-5793(99)00180-5
  23. Machuca, A. and A. Ferraz. 2001. Hydrolytic and oxidative enzymes produced by white- and brown-rot fungi during Eucalyptus grandis decay in solid medium. Enzyme Microb. Technol. 29, 386-391 https://doi.org/10.1016/S0141-0229(01)00417-3
  24. Mandels, M. and E.T. Reese. 1957. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol. 73, 269-278 https://doi.org/10.1002/path.1700730133
  25. Martinez, G., L.F. Larrondo, N. Putnam, M.D.S. Gelpke, K. Huang, J. Chapman, K.G. Helfenbein, P. Ramaiya, J.C. Detter, F. Larimer, P.M. Coutinho, B. Henrissat, R. Berka, D. Cullen, and D. Rokhsar. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnol. 22, 1-6 https://doi.org/10.1038/nbt0104-1
  26. Ratto, M., A.C. Ritschkoff, and L. Viikari. 1997. The effect of oxidative pretreatment on cellulose degradation by Poria placenta and Trichoderma reesei cellulases. Appl. Microbiol. Biotechnol. 48, 53-57 https://doi.org/10.1007/s002530051014
  27. Roberts, G.A.F. 1991. Accessibility of cellulose, p. 9-24. In J.C. Roberts (ed.), Paper Chemistry. Blackie & Son, New York
  28. Schmidhalter, D.R. and G. Canevascini. 1993. Purification and characterization of two exo-cellobiohydrolases from the brown-rot fungus Coniophora puteana (Schum ex Fr) Karst. Arch. Biochem. Biophys. 300, 551-558 https://doi.org/10.1006/abbi.1993.1076
  29. Schubot, F.D., I.A. Kataeva, J. Chang, A.K. Shah, L.G. Ljungdahl, J.P. Rose, and B.C. Wang. 2004. Structural basis for the exocellulase activity of the cellobiohydrolase cbhA from Clostridium thermocellum. Biochemistry 43, 1163-1170 https://doi.org/10.1021/bi030202i
  30. Segal, L., J.J. Creely, A.E. Martin, and C.M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Resear. J. 29, 764-786
  31. Shin, K.-S. 2004. The role of enzymes produced by white-rot fungus Irpex lacteus in the decolorization of the textile industry effluent. J. Microbiol. 42. 37-41
  32. Tomme, P., D.P. Driver, E.A. Amandoron, R.C. Miller Jr., R. Antony, J. Warren, and D.G. Kilburn. 1995. Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. J. Bacteriol. 177, 4356-4363 https://doi.org/10.1128/jb.177.15.4356-4363.1995
  33. Tuohy, M.G., D.J. Walsh, P.G. Murray, M. Claeyssens, M.M. Cuffe, A.V. Savage, and M.P. Coughlan. 2002. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim. et Biophysic. Acta 1596, 366-380 https://doi.org/10.1016/S0167-4838(01)00308-9
  34. Uzcategui, E., G. Johansson, B. Ek, and G. Pettersson. 1991. The 1,4-$\beta$-D-glucan glucanohydrolases from Phanerochaete chrysosporium. Reassessment of their significance in cellulose degradation mechanisms. J. Biotechnol. 21, 143-160 https://doi.org/10.1016/0168-1656(91)90267-Y
  35. Woodward, J. 1991. Synergism in cellulose systems. Bioresour. Technol. 36, 67-75 https://doi.org/10.1016/0960-8524(91)90100-X
  36. Yoon, J.J., T. Hattori, and M. Shimada. 2002. A metabolic role of the glyoxylate and tricarboxylic acid cycles for development of the copper-tolerant brown-rot fungus Fomitopsis palustris. FEMS Microbiol. Lett. 217, 9-14 https://doi.org/10.1111/j.1574-6968.2002.tb11449.x