Browse > Article

Characterization of Xylanase from Lentinus edodes M290 Cultured on Waste Mushroom Logs  

Lee, Jae-Won (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
Gwak, Ki-Seob (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
Kim, Su-Il (Department of Agricultural Biotechnology, Seoul National University)
Kim, Mi-Hyang (Department of Agricultural Biotechnology, Seoul National University)
Choi, Don-Ha (Department of Wood Chemistry and Microbiology, Korea Forest Research Institute)
Choi, In-Gyu (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.11, 2007 , pp. 1811-1817 More about this Journal
Abstract
Extracellular enzymes from Lentinus edodes M290 on normal woods (Quercus mongolica) and waste logs from oak mushroom production were comparatively investigated. Endoglucanase, cellobiohydrolase, ${\beta}$-glucosidase, and xylanase activities were higher on waste mushroom logs than on normal woods after 1. edodes M290 inoculation. Xylanase activity was especially different, with a three times higher activity on waste mushroom logs. When the waste mushroom logs were used as a carbon source, a new 35 kDa protein appeared. After the purification, the optimal pH and temperature for xylanase activity were determined to be 4.0 and $50^{\circ}C$, respectively. More than 50% of the optimal xylanase activity was retained when the temperature was increased from 20 to $60^{\circ}C$, after a 240 min reaction. At $40^{\circ}C$, the xylanase maintained 93% of the optimal activity, after a 240 min reaction. The purified xylanase showed a very high homology to the xylanase family 10 from Aspergillus terreus by LC/MS-MS analysis. The highest Xcorr (1.737) was obtained from the peptide KWI SQGIPIDGIG SQTHLGSGGS WTVK originated from Aspergillus terreus, indicating that the 35 kDa protein was xylanase. This protein showed low homology to a previously reported L. edodes xylanase sequence.
Keywords
Xylanase; waste mushroom logs; Lentinus edodes; purification;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
2 Buswell, J. A., Y. Cai, and S. Chang. 1995. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Lett. 128: 81-88   DOI
3 Hong, S. W., K. S. Shin, Y. Yoon, and W. K. Lee. 1986. Extracellular wood-degradative enzymes from Lentinus edodes JA01. Kor. J. Mycol. 14: 189-194   과학기술학회마을
4 Kremer, S. M. and P. M. Wood. 1992. Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Eur. J. Biochem. 205: 133-138   DOI   ScienceOn
5 Kusuma, K., G. H. Chon, J. S. Lee, J. Kongkiattikajorn, K. Ratanakhanokchai, K. L. Kyu, J. H. Lee, M. S. Roh, Y. Y. Choi, H. Park, and Y. S. Lee. 2006. Hydrolysis of agricultural residues and kraft pulps by xylanolytic enzymes from alkaliphilic Bacillus sp. strain BK. J. Microbiol. Biotechnol. 16: 1255-1261   과학기술학회마을
6 Lee, C. C., D. W. S. Wong, and G. H. Robertson. 2001. Cloning and characterization of two cellulase genes from Lentinula edodes. FEMS Lett. 205: 355-360   DOI
7 Silva, E. M., A. Machuca, and A. M. F. Milagres. 2005. Effect of cereal brans on Lentinula edodes growth and enzyme activities during cultivation on forestry waste. Lett. Appl. Microbiol. 40: 283-288   DOI   ScienceOn
8 Lee, Y. S., K. Ratanakhanokchai, W. Piyatheerawong, K. L. Kyu, M. S. Rho, Y. S. Kim, A. Om, J. W. Lee, O. H. Jhee, G. H. Chon, H. Park, and J. Kang. 2006. Production and location of xylanolytic enzymes in alkaliphilic Bacillus sp. K-1. J. Microbiol. Biotechnol. 16: 921-926   과학기술학회마을
9 Laemli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
10 Mata, G. and J. M. Savoie. 1998. Extracellular enzyme activities in six Lentinula edodes strains during cultivation in wheat straw. World J. Microbiol. Biotechnol. 14: 513-519   DOI
11 Sakamoto, Y., T. Irie, and T. Sato. 2005. Isolation and characterization of a fruiting body-specific exo-$\beta$-1,3- glucanase-encoding gene, exg1, from Lentinula edodes. Curr. Genet. 47: 244-252   DOI
12 Igarashi, K., M. Samejima, Y. Savuri, N. Habu, and K. E. L. Eriksson. 1997. Localization of cellobiose dehydrogenase in cellulose grown cultures of Phanerochaete chrysosporium. Fungal Genet. Biol. 21: 214-222   DOI   ScienceOn
13 Polizeli, M. L. T. M., A. C. S. Rizzatti, and R. Monti. 2005. Xylanases from fungi: Properties and industrial application. Appl. Microbiol. Biotechnol. 67: 577-591   DOI
14 Christopher H. V., C. D. Trevor, and E. S. Colin. 2003. Biodegradation of Oak (Quercus alba) wood during growth of the Shiitake mushroom (Lentinula edodes): A molecular approach. J. Agric. Food Chem. 51: 947-956   DOI   ScienceOn
15 Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondai. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338   DOI
16 Makkar, R. S., A. Tsuneda, K. Tokuyasu, and Y. Mori. 2001. Lentinula edodes produces a multicomponent protein complex containing manganese (II)-dependent peroxidase, laccase and ${\beta}$-glucosidase. FEMS Lett. 200: 175-179
17 Lee, C. C., D. W. S. Wong, and G. H. Robertson. 2005. Cloning and characterization of the Xyn11A gene from Lentinula edodes. Protein J. 24: 21-26   DOI   ScienceOn
18 Krisana, A., S. Rutchadaporn, G. Jarupan, E. Lily, T. Sutipa, and K. Kanyawim. 2005. Endo-1,4-$\beta$-xylanase from Aspergillus cf. niger BCC14405 isolated in Thailand: Purification, characterization and gene isolation. J. Biochem. Mol. Biol. 38: 17-23   DOI
19 Choi, J. H., O. S. Lee, J. H. Shin, Y. Y. Kwak, Y. M. Kim, and I. K. Rhee. 2006. Thermostable xylanase encoded by xynA of Streptomyces thermocyaneoviolaceus: Cloning, purification, characterization and production of xylooligosaccharides. J. Microbiol. Biotechnol. 16: 57-63   과학기술학회마을
20 Hamada, N., K. Ishikawa, N. Fuse, R. Kodaira, M. Shimosaka, Y. Amano, T. Kanda, and M. Okazaki. 1999. Purification, characterization and gene analysis of exocellulase II (Ex-II) from the white rot basidiomycete Irpex lacteus. J. Biosci. Bioeng. 87: 442-451   DOI   ScienceOn
21 Chandrakant, P. and V. S. Bisaria. 1998. Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit. Rev. Biotechnol. 18: 295-331   DOI   ScienceOn
22 Abbas, A., H. Koc, F. Liu, and M. Tien. 2005. Fungal degradation of wood: Initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr. Genet. 47: 49-56   DOI
23 Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67   DOI
24 Berlin, A., N. Gilkes, D. Kilburn, V. Mazimenko, R. Bura, A. Markov, A. Skomarovsky, A. Gusakov, A. Sinitsyn, O. Okunev, I. Solovieva, and J. N. Saddler. 2006. Evaluation of cellulase preparations for hydrolysis of hardwood substrate. Appl. Biochem. Biotechnol. 129-132: 528-545
25 Koo, B. W., J. Y. Park, S. M. Lee, D. H. Choi, and I. G. Choi. 2005. Analysis of chemical and physical characteristics of log woods for oak mushroom production depending on cultivation periods and steam explosion treatment. Mokchae Konghak 33: 77-86
26 Chakrit, T., Y. S. Lee, K. Rantanakhanokchai, S. Pinitglang, K. L. Kyu, M. S. Rho, and S. K. Lee. 2006. Purification and characterization of two endoxylanases from an alkaliphilic Bacillus halodurans C-1. J. Microbiol. Biotechnol. 16: 613-618   과학기술학회마을
27 Varela, E., T. Mester, and M. Tien. 2003. Culture conditions affecting biodegradation components of the brown-rot fungus Gloeophyllum traberm. Arch. Microb. 180: 251-256   DOI