Browse > Article

Characterization and Action Patterns of Two ${\beta}$-1,4-Glucanases Purified from Cellulomonas uda CS1-1  

Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Choi, Woo-Young (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.8, 2007 , pp. 1291-1299 More about this Journal
Abstract
Two ${\beta}$-1,4-glucanases (DI and DIII fractions) were purified to homogeneity from the culture filtrate of a cellulolytic bacteria, Cellulomonas sp. CS 1-1, which was classified as a novel species belonging to Cellulomonas uda based on chemotaxanomic and phylogenetic analyses. The molecular mass was estimated as 50,000 Da and 52,000 Da for DI and DIII, respectively. Moreover, DIII was identified as a glycoprotein with a pI of 3.8, and DI was identified as a non-glycoprotein with a pI of 5.3. When comparing the ratio of the CMC-saccharifying activity and CMC-liquefying activity, DI exhibited a steep slope, characteristic of an endoglucanase, whereas DIII exhibited a low slope, characteristic of an exoglucanase. The substrate specificity of the purified enzymes revealed that DI efficiently hydrolyzed CMC as well as xylan, whereas DIII exhibited a high activity on microcrystalline celluloses, such as Sigmacells. A comparison of the hydrolysis patterns for pNP-glucosides (DP 2-5) using an HPLC analysis demonstrated that the halosidic bond 3 from the nonreducing end was the preferential cleavage site for DI, whereas bond 2, from which the cellobiose unit is split off, was the preferential cleavage site for DIII. The partial N-terminal amino acid sequences for the purified enzymes were $^1Ala-Gly-Ser-Thr-Leu-Gln-Ala-Ala-Ala-Ser-Glu-Ser-Gly-Arg-Tyr^{15}$-for DI and $^1Ala-Asp-Ser-Asp-Phe-Asn-Leu-Tyr-Val-Ala-Glu-Asn-Ala-Met-Lys^{15}$-for DIII. The apparent sequences exhibited high sequence similarities with other bacterial ${\beta}$-1,4-glucanases as well as ${\beta}$-1,4-xylanases.
Keywords
Cellulomonas uda CS 1-1; ${\beta}$-1,4-glucanases; purification; hydrolysis patterns; substrate specificity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Canevascini, G. and C. Gattlen. 1981. A comparative investigation of various cellulase assay procedures. Biotechnol. Biochem. Biophys. 25: 377-379
2 Dubos, R. J. 1928. The decomposition of cellulose by aerobic bacteria. J. Bacteriol. 15: 223-234
3 Haggett, K. D., P. P. Gray, and N. W. Dunn. 1979. Crystalline cellulose degradation by a strain of Cellulomonas and its mutant derivatives. Eur. J. Appl. Microbiol. Biotechnol. 8: 183-190   DOI
4 Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment briefings. Bioinformatics 5: 150-163   DOI
5 Mesbah, M., U. Premachandran, and W. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Evol. Microbiol. 39: 159-167
6 Nakamura, K. and K. Kitamura. 1983. Purification and some properties of a cellulase active on crystalline cellulose from Cellulomonas uda. J. Ferment. Technol. 61: 379-382
7 Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849   DOI   ScienceOn
8 Tuohy, M. G., D. J. Walsh, P. G. Murray, M. Claeyssens, M. M. Cuffe, A. G. Savage, and M. P. Coughlan. 2002. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim. Biophys. Acta 1596: 366-380   DOI   ScienceOn
9 White, A., S. G. Withers, N. R. Gilkes, and D. R. Rose. 1994. Crystal structure of the catalytic domain of the beta-1,4- glycanase cex from Cellulomonas fimi. Biochemistry 33: 12546-12552   DOI   ScienceOn
10 Wood, T. M., S. I. Mcrae, and K. M. Bhat. 1989. The mechanism of fungal cellulase action. Biochem. J. 260: 37-43   DOI
11 Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
12 Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23
13 Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge
14 Hall, M. G. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucl. Acids Symp. Ser. 41: 95-98
15 Dubois, M., K. A. Gilles, and F. Smith. 1956. Colorimetric method for determination of sugars and related substance. Anal. Chem. 28: 350-356   DOI
16 Emtiazi, G. and I. Nahvi. 2004. Production of thermostableamylase and cellulose from Cellulomonas sp. J. Microbiol. Biotechnol. 14: 1196-1199
17 Moore, D. D. 1995. Preparation and analysis of DNA, pp. 2-11. In F. W. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds.), Current Protocols in Molecular Biology. Wiley, New York, U.S.A
18 Choudhury, N., P. P. Gray, and N. W. Dunn. 1980. Reducing sugar accumulation from alkali pretreated sugar cane bagasse using Cellulomonas. J. Appl. Microbiol. Biotechnol. 11: 50- 54   DOI
19 Hall, J., G. P. Hazlewood, N. S. Huskisson, A. J. Durrant, and H. J. Gilbert. 1989. Conserved serine-rich sequences in xylanase and cellulase from Pseudomonas fluorescens subspecies cellulosa. Mol. Microbiol. 3: 1211-1219   DOI   ScienceOn
20 Heo, S. N., J. Y. Kwak, H. W. Oh, D. S. Park, K. S. Bae, D. H. Shin, and H. Y. Park. 2006. Characerization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759   과학기술학회마을
21 Claeyssens, M., H. Van Tilbeurgh, P. Tomme, T. M. Wood, and S. I. McCrae. 1989. Fungal cellulose systems; Comparisons of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem. J. 216: 819-825
22 Grabski, A. C., I. T. Forrester, R. Patel, and T. W. Jeffries. 1993. Characterization and N-terminal amino acid sequences of beta-(1-4)endoxylanases from Streptomyces roseiscleroticus. Protein Expr. Purif. 4: 120-129   DOI   ScienceOn
23 Pason, P., G. H. Chon, K. Ratanakhanokchai, K. L. Kyu, O. H. Jhee, J. Kang, W. H. Kim, K. M. Choi, G. S. Park, J. S. Lee, H. Park, M. S. Roh, and Y. S. Lee. 2006. Selection of multienzyme complex-producing bacteria under aerobic cultivation. J. Microbiol. Biotechnol. 16: 1269-1275   과학기술학회마을
24 Shin, Y. K., J. S. Lee, C. O. Chun, H. J. Kim, and Y. H. Park. 1996. Isoprenoid quinone profiles of the Leclercia adecarboxylata KTCT $1036^T$. J. Microbiol. Biotechnol. 6: 68-69
25 Derewenda, U., L. Swenson, R. Green, Y. Wei, R. Morosli, F. Shareck, D. Kluepfel, and Z. S. Derewenda. 1994. Crystal structure, at 2.6-A resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1.4-$\beta$-Dglycanases. J. Biol. Chem. 269: 20811-20814
26 Rivas, R., M. F. Trujillo, P. F. Mateos, E. Martínez-Molina, and E. Velázquez. 2004. Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. Int. J. Syst. Evol. Microbiol. 54: 533-536   DOI   ScienceOn
27 Ezaki T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric DNA-DNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol. 39: 224-229
28 O'Neil, G., S. H. Goh, R. A. J. Warren, D. G. Kilburn, and R. C. Miller Jr. 1986. Structure of the gene encoding the exoglucanase of Cellulomonas fimi. Gene 44: 325-330   DOI
29 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
30 Choi, W. Y., K. D. Haggett, and N. W. Dunn. 1978. Isolation of a cotton wool degrading strain of Cellulomonas mutants with altered ability to degrade cotton wool. Aust. J. Biol. Sci. 31: 553-564   DOI
31 Tsujibo, H., K. Miyamoto, T. Kuda, K. Minami, T. Sakamoto, T. Hasegawa, and Y. Inamori. 1992. Purification, properties, and thermostable xylanases from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 58: 371-375
32 Jones, B. E., W. D. Grant, A. W. Duckworth, P. Schumann, N. Weiss, and E. Stackebrandt. 2005. Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonad. Int. J. Syst. Evol. Microbiol. 55: 1711-1714   DOI   ScienceOn
33 Medve, J., J. Karlsson, D. Lee, and F. Tjerneld. 1998. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei; Adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng. 59: 621-634   DOI   ScienceOn
34 Sanchez, M. M., F. I. Javier Pastor, and P. Diaz. 2003. Exo-mode of action of cellobiohydrolase Cel48C from Paenibacillus sp. BP-23. Eur. J. Biochem. 270: 2913-2919   DOI   ScienceOn
35 Shareck, F., C. Roy, M. Yaguchi, R. Morosoli, and D. Kluepfel. 1991. Sequences of three genes specifying xylanases in Streptomyces lividans. Gene 107: 75-82   DOI   ScienceOn
36 Lee, Y. E., S. E. Lowe, and J. G. Zeikus. 1993. Gene cloning, sequence and biochemical characterization of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. Appl. Environ. Microbiol. 59: 3134-3137
37 Zverlov, V. V., G. A. Velikodvorskaya, and W. H. Schwarz. 2002. A newly described cellulosomal cellobiohydrolase, CelO, from Clostidium thermocellum: Investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose. Microbiology 148: 247-255   DOI
38 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
39 Langsford, M. L., N. R. Gilkes, W. W. Wakarchuk, D. G. Kilburn, and R. C. Miller. 1984. The cellulase system of Cellulomonas fimi. J. Gen. Microbiol. 130: 1367-1376
40 Lowe, S. E., M. K. Theodorou, and A. J. Trinci. 1987. Cellulase and xylanase of an anaerobic rumen fungus grown on wheat straw holocellulose, cellulose and xylan. Appl. Environ. Microbiol. 53: 1216-1223