Browse > Article
http://dx.doi.org/10.4014/jmb.1210.10060

Optimization of ${\beta}$-Glucosidase Production by a Strain of Stereum hirsutum and Its Application in Enzymatic Saccharification  

Ramachandran, Priyadharshini (Department of Chemical Engineering, Konkuk University)
Nguyen, Ngoc-Phuong-Thao (Department of Chemical Engineering, Konkuk University)
Choi, Joon-Ho (Department of Food Science and Biotechnology, Wonkwang University)
Kang, Yun Chan (Department of Chemical Engineering, Konkuk University)
Jeya, Marimuthu (Department of Chemical Engineering, Konkuk University)
Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.3, 2013 , pp. 351-356 More about this Journal
Abstract
A high ${\beta}$-glucosidase (BGL)-producing strain, Stereum hirsutum, was identified and isolated and showed a maximum BGL activity (10.4 U/ml) when cultured with Avicel and tryptone as the carbon and nitrogen sources, respectively. In comparison with other BGLs, BGL obtained from S. hirsutum showed a higher level of activity to cellobiose ($V_{max}$ = 172 U/mg, and $k_{cat}$ = 281/s). Under the optimum conditions (600 rpm, $30^{\circ}C$, and pH 6.0), the maximum BGL activity of 10.4 U/ml with the overall productivity of 74.5 U/l/h was observed. BGL production was scaled up from a laboratory scale (7-L fermenter) to a pilot scale (70-L fermenter). When S. hirsutum was cultured in fed-batch culture with rice straw as the carbon source in a 70-L fermenter, a comparable productivity of 78.6 U/l/h was obtained. Furthermore, S. hirsutum showed high levels of activity of other lignocellulases (cellobiohydrolase, endoglucanase, xylanase, and laccase) that are involved in the saccharification of biomasses. Application of S. hirsutum lignocellulases in the hydrolysis of Pinus densiflora and Catalpa ovata showed saccharification yields of 49.7% and 43.0%, respectively, which were higher than the yield obtained using commercial enzymes.
Keywords
Biomass; ${\beta}$-glucosidase; production; pilot scale; saccharification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Joo, A. R., K. M. Lee, W. I. Sim, M. Jeya, M. R. Hong, Y. S. Kim, et al. 2009. Thiamine increases $\beta$-glucosidase production in the newly isolated strain of Fomitopsis pinicola. Lett. Appl. Microbiol. 49: 196-203.   DOI   ScienceOn
2 Cara, C., E. Ruiz, I. Ballesteros, M. J. Negro, and E. Castro. 2006. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem. 41: 423-429.   DOI   ScienceOn
3 Deng, Y. and S. S. Fong. 2010. Influence of culture aeration on the cellulase activity of Thermobifida fusca. Appl. Microbiol. Biotechnol. 85: 965-974.   DOI
4 Garcia Kirchner, O., M. Segura-Granados, and P. Rodriguez- Pascual. 2005. Effect of media composition and growth conditions on production of $\beta$-glucosidase by Aspergillus niger C-6. Appl. Biochem. Biotechnol. 121-124: 347-359.
5 Gupta, R., G. Mehta, Y. P. Khasa, and R. C. Kuhad. 2011. Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22: 797-804.   DOI   ScienceOn
6 Horn, S., G. Vaaje-Kolstad, B. Westereng, and V. G. Eijsink. 2012. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 5: 45.   DOI   ScienceOn
7 Kocher, G. S., K. L. Kalra, and G. Banta. 2008. Optimization of cellulase production by submerged fermentation of rice straw by Trichoderma harzianum Rut-C 8230. Int. J. Microbiol. 5.
8 Kostylev, M. and D. Wilson. 2012. Synergistic interactions in cellulose hydrolysis. Biofuels 3: 61-70.   DOI   ScienceOn
9 Kovacs, K., S. Macrelli, G. Szakacs, and G. Zacchi. 2009. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol. Biofuels 2: 14.   DOI   ScienceOn
10 Kuhad, R. C., R. Gupta, and A. Singh. 2011. Microbial cellulases and their industrial applications. Enzyme Res. 2011. DOI: 10.4061/2011/280696.
11 Lee, S. M., B. W. Koo, J. W. Choi, D. H. Choi, B. S. An, E. B. Jeung, et al. 2005. Degradation of bisphenol A by white rot fungi, Stereum hirsutum and Heterobasidium insulare, and reduction of its estrogenic activity. Biol. Pharm. Bull. 28: 201-207.   DOI   ScienceOn
12 Saha, B. C. and M. A. Cotta. 2008. Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioenergy 32: 971-977.   DOI   ScienceOn
13 Lynd, L. R., M. S. Laser, D. Bransby, B. E. Dale, B. Davison, R. Hamilton, et al. 2008. How biotech can transform biofuels. Nat. Biotechnol. 26: 169-172.   DOI   ScienceOn
14 Mendoza, N. S., Y. Katakura, and S. Shioya. 2004. Influence of agitation and dissolved oxygen tension on the growth and cellulase-free xylanase production by Thermomyces lanuginosus C1a in bioreactor. Biotechnol. Sustain. Util. Biol. Resour. Trop. 17: 284-289.
15 Nguyen, N. P., K. M. Lee, I. W. Kim, Y. S. Kim, M. Jeya, and J. K. Lee. 2010. One-step purification and characterization of a $\beta$-1,4-glucosidase from a newly isolated strain of Stereum hirsutum. Appl. Microbiol. Biotechnol. 87: 2107-2116.   DOI
16 Singhania, R. R., A. K. Patel, R. K. Sukumaran, C. Larroche, and A. Pandey. 2013. Role and significance of $\beta$-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol. 127: 500-507.   DOI   ScienceOn
17 Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, et al. 2008. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Golden, CO.
18 Srivastava, S. K., K. B. Ramachandran, and K. S. Gopalkrishnan. 1981. $\beta$-Glucosidase production by Aspergillus wentii in stirred tank bioreactors. Biotechnol. Lett. 3: 477-480.   DOI