• 제목/요약/키워드: Endo-xylanase

검색결과 45건 처리시간 0.029초

Cloning, Expression, and Characterization of Protease-resistant Xylanase from Streptomyces fradiae var. k11

  • Li, Ning;Yang, Peilong;Wang, Yaru;Luo, Huiying;Meng, Kun;Wu, Nigfeng;Fan, Yunliu;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.410-416
    • /
    • 2008
  • The gene SfXyn10, which encodes a protease-resistant xylanase, was isolated using colony PCR screening from a genomic library of a feather-degrading bacterial strain Streptomyces fradiae var. k11. The full-length gene consists of 1,437bp and encodes 479 amino acids, which includes 41 residues of a putative signal peptide at its N terminus. The amino acid sequence shares the highest similarity (80%) to the endo-1,4-${\beta}$-xylanase from Streptomyces coelicolor A3, which belongs to the glycoside hydrolase family 10. The gene fragment encoding the mature xylanase was expressed in Escherichia coli BL21 (DE3). The recombinant protein was purified to homogeneity by acetone precipitation and anion-exchange chromatography, and subsequently characterized. The optimal pH and temperature for the purified recombinant enzyme were 7.8 and $60^{\circ}C$, respectively. The enzyme showed stability over a pH range of 4.0-10.0. The kinetic values on oat spelt xylan and birchwood xylan substrates were also determined. The enzyme activity was enhanced by $Fe^{2+}$ and strongly inhibited by $Hg^{2+}$ and SDS. The enzyme also showed resistance to neutral and alkaline proteases. Therefore, these characteristics suggest that SfXyn10 could be an important candidate for protease-resistant mechanistic research and has potential applications in the food industry, cotton scouring, and improving animal nutrition.

Rice Straw-Decomposing Fungi and Their Cellulolytic and Xylanolytic Enzymes

  • Lee, Sang-Joon;Jang, Yeong-Seon;Lee, Young-Min;Lee, Jae-Jung;Lee, Han-Byul;Kim, Gyu-Hyeok;Kim, Jae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권12호
    • /
    • pp.1322-1329
    • /
    • 2011
  • Filamentous fungi colonizing rice straw were collected from 11 different sites in Korea and were identified based on characterization of their morphology and molecular properties. The fungi were divided into 25 species belonging to 16 genera, including 14 ascomycetes, one zygomycete, and one basidiomycete. Fungal cellulolytic and xylanolytic enzymes were assessed through a two-step process, wherein highly active cellulase- and/or hemicellulase-producing fungi were selected in a first screening step followed by a second step to isolate the best enzyme-producer. Twenty-five fungal species were first screened for the production of total cellulase (TC), endo-${\beta}$-1,4 glucanase (EG), and endo-${\beta}$-1,4 xylanase (XYL) using solid-state fermentation with rice straw as substrate. From this screening, six species, namely, Aspergillus niger KUC5183, A. ochraceus KUC5204, A. versicolor KUC5201, Mucor circinelloides KUC6014, Trichoderma harzianum 1 KUC5182, and an unknown basidiomycete species, KUC8721, were selected. These six species were then incubated in liquid Mandels' media containing cellulose, glucose, rice straw, or xylan as the sole carbon source and the activities of six different enzymes were measured. Enzyme production was highly influenced by media conditions and in some cases significantly increased. Through this screening process, Trichoderma harzianum 1 KUC5182 was selected as the best enzyme producer. Rice straw and xylan were good carbon sources for the screening of cellulolytic and xylanolytic enzymes.

Efficacy of combination of endo-xylanase and xylan-debranching enzymes in improving cereal bran utilization in piglet diet

  • Wang, Weiwei;Zheng, Dawen;Zhang, Zhenzhen;Ye, Hui;Cao, Qingyun;Zhang, Changming;Dong, Zemin;Feng, Dingyuan;Zuo, Jianjun
    • Animal Bioscience
    • /
    • 제35권11호
    • /
    • pp.1733-1743
    • /
    • 2022
  • Objective: This study was aimed to explore the efficacy of combination of endo-xylanase (Xyn) and xylan-debranching enzymes (arabinofuranosidase, Afd and feruloyl esterase, FE) in improving utilization of bran in piglet diet. Methods: In vitro experiments were firstly conducted to examine the enzymological properties of Xyn, Afd, and FE, concurrent with their effect on degradation of arabinoxylan (Abx) in bran. In vivo experiment was then implemented by allocating two hundred and seventy 35-d-old postweaning piglets into 3 groups (6 replicates/group), which received bran-containing diet supplemented with Xyn (1,600 U/kg) or its combination with Afd (0.8 U/kg) and FE (4 U/kg) or without enzyme. Results: Both Xyn, Afd, and FE are relatively stable against the changes in temperature and pH value. Combining Xyn with Afd and FE had a superiority (p<0.05) over Xyn alone and its combination with Afd or FE in promoting (p<0.05) degradation of Abx in different brans. Combined treatment with Xyn, Afd, and FE was more beneficial than Xyn alone to induce increasing trends (p<0.10) of average daily gain, final body weight and feed efficiency of piglets fed bran-containing diet. Moreover, combination of Xyn, Afd, and FE showed advantages (p<0.05) over Xyn alone in causing reductions (p<0.05) in diarrhea rate and cecal pH value, concurrent with increases (p<0.05) in cecal and colonic acetic acid and total volatile fatty acid concentrations, as well as cecal butyric acid concentration of piglets fed bran-containing diet. Conclusion: Combining Xyn with Afd and FE was more beneficial than Xyn alone in promoting degradation of Abx in bran, along with growth performance and intestinal volatile fatty acid profile of piglets received bran-containing diet. Thereby, combination of Xyn, Afd, and FE had a superior efficacy relative to Xyn alone in improving application of cereal bran in piglet diet.

Isolation and Characterization of Endocellulase-Free Multienzyme Complex from Newly Isolated Thermoanaerobacterium thermosaccharolyticum Strain NOI-1

  • Chimtong, Suphavadee;Tachaapaikoon, Chakrit;Pason, Patthra;Kyu, Khin Lay;Kosugi, Akihiko;Mori, Yutaka;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권3호
    • /
    • pp.284-292
    • /
    • 2011
  • An endocellulase-free multienzyme complex was produced by a thermophilic anaerobic bacterium, Thermoanaerobacterium thermosaccharolyticum strain NOI-1, when grown on xylan. The temperature and pH optima for growth were $60^{\circ}C$ and 6.0, respectively. The bacterial cells were found to adhere to insoluble xylan and Avicel. A scanning electron microscopy analysis showed the adhesion of xylan to the cells. An endocellulase-free multienzyme complex was isolated from the crude enzyme of strain NOI-1 by affinity purification on cellulose and Sephacryl S-300 gel filtration. The molecular mass of the multienzyme complex was estimated to be about 1,200 kDa. The multienzyme complex showed one protein on native PAGE, one xylanase on a native zymogram, 21 proteins on SDS-PAGE, and 5 xylanases on a SDS zymogram. The multienzyme complex consisted of xylanase, ${\beta}$-xylosidase, ${\alpha}$-L-arabinofuranosidase, ${\beta}$-glucosidase, and cellobiohydrolase. The multienzyme complex was effective in hydrolyzing xylan and corn hulls. This is the first report of an endocellulase-free multienzyme complex produced by a thermophilic anaerobic bacterium, T. thermosaccharolyticum strain NOI-1.

Paenibacillus amylolyticus 유래 xylanase GH10 및 GH30의 xylan 가수분해 특성 (Enzymatic characterization of Paenibacillus amylolyticus xylanases GH10 and GH30 for xylan hydrolysis)

  • 남경화;장명운;김민정;이정민;이민재;김태집
    • 미생물학회지
    • /
    • 제52권4호
    • /
    • pp.463-470
    • /
    • 2016
  • Xylan의 효소적 가수분해는 고부가가치 기능성 물질 또는 바이오에너지 생산을 위한 발효성 당을 얻는 가장 유용한 방법 중 하나이다. endo-${\beta}$-Xylanase는 xylan 주사슬 내부의 ${\beta}$-1,4-결합을 가수분해하여 xylobiose, xylotriose를 포함한 다양한 XOS를 생산하는 핵심 효소이다. 이들 효소 중에서 glucuronoxylanase GH30은 methylglucuronic acid가 측쇄에 수식된 xylan에 특이적으로 작용한다. 본 연구에서는 Paenibacillus amylolyticus KCTC 3005에서 유래한 2종의 xylan 가수분해효소(PaXN_10과 PaGuXN_30) 유전자를 클로닝하고, Escherichia coli에서 각각 발현시켰다. PaXN_10 (38.7 kDa)은 ${\beta}$-xylanase GH10 계열, PaGuXN_30 (58.5 kDa)은 glucuronoxylanase GH30에 해당하는 효소이며, $50^{\circ}C$와 pH 7.0에서 최대 활성을 나타내었다. 가수분해 특성 연구를 통해 P. amylolyticus가 목질계 glucuronoxylan을 분해하는 효소 시스템을 제안하였다. 세포 외로 분비되는 PaGuXN_30은 glucuroxylan을 가수분해하여 methylglucuronic acid 측쇄를 가지는 다양한 aldouronic acid mixtures를 생성하며, 이러한 분해산물은 세포 내로 이동하여 PaXN_GH10에 의해 xylose, xylobiose와 같은 저분자 XOS로 분해되어 세포 내 대사경로에 이용될 수 있다. 또한 이들 효소의 가수분해특성을 이용하여 다양한 탄수화물 소재 생산이 가능할 것으로 기대한다.

느티만가닥버섯의 신품종에 대한 endo-, exo-cellular 효소 활성도의 비교 (Comparison of Endo-, Exo-Cellular Enzyme Activity for New Strains of Hypsizygus marmoreus)

  • 이창윤;송호성;노현수;우주리;유영현;김종국
    • 생명과학회지
    • /
    • 제22권6호
    • /
    • pp.837-843
    • /
    • 2012
  • 본 연구는 새롭게 개발된 느티만가닥버섯의 6개 품종에 대한 형태적, 생리적 특성을 조사하고 endo-, exo-cellular 효소 활성을 측정하기 위해서 수행되었다. 국내 야생종인 Hm3-10과 일본 재배종인 Hm1-1과의 단핵균사 교배를 통하여 343개의 교배 균주를 획득하여 재배를 실시하여 58개 균주를 1차 선발하고 2차로 6개 균주를 선발하였다. 6개 선발 균주를 대상으로 배양 일수 별로 재배를 실시한 결과 배양일수가 80일 이상에서는 재배일수가 19~20일로 단축되어 최적 배양일수를 80일로 결정하였다. 80일 배양일수에서 각 품종별 형태적 특성을 검증한 결과 Hm15-3, Hm15-4, Hm17-5의 3균주가 재배에 적합한 균주로 판명되었다. 각 균주의 endo-cellular 효소 활성도를 측정한 결과, ${\alpha}$-amylase의 효소 활성도가 73.9~102,2 unit/mg protein으로 가장 높았으며, chitinase 의 효소 활성도가 8.1~13.1 unit/mg protein으로 측정되었다. Exo-cellular효소 활성도를 측정한 결과, ${\alpha}$-amylase의 효소 활성도가 5,292~1,184 unit/mg protein으로 가장 높았으며, CMCase와 Xylanase의 효소 활성도가 각각 1,140~245 unit/mg protein, 94~575 unit/mg protein으로 측정되었다. 그러나 ${\beta}$-glucosidase와 chitinase의 활성도는 비교적 낮은 활성도를 나타내었다.

제주도 토양에서 분리한 xylanase 생산균주 Streptomyces glaucescens subsp. WJ-1의 동정 및 효소의 생화학적 특성 연구 (Identification and Biochemical Characterization of Xylanase-producing Streptomyces glaucescens subsp. WJ-1 Isolated from Soil in Jeju Island, Korea)

  • 김다솜;정성철;배창환;지원재
    • 한국미생물·생명공학회지
    • /
    • 제45권1호
    • /
    • pp.43-50
    • /
    • 2017
  • 본 연구로부터 WJ-1 균주는 제주도에서 수집된 토양샘플로부터 동정되었는데, 형태분화관찰 및 16S rRNA 유전자 염기서열분석과 DNA-DNA hybridization 분석을 통하여 S. glaucescens의 신아종으로 분류되었다. 균주 WJ-1의 주요 cellular fatty acid와 게놈내 G+C 농도는 각각 $C_{15:0}$ anteiso (42.99%)와 74.73 mol%였다. 이 균은 배양액으로부터 준비된 조효소액의 xylanase 활성은 중성 pH 조건 및 $55^{\circ}C$에서 활성이 가장 높았다. S. glaucescens의 조효소액을 이용하여 xylan으로부터 xylotriose 및 xylotetraose를 포함하는 xylooligosaccharide를 제조할 수 있다. 본 연구는 S. glaucescens의 아종에 관한 최초의 보고이며, 관련 종에서 xylanase 활성에 관한 최초의 보고이다. 본 연구 결과로부터, WJ-1 균주는 lignocellulosic biomass의 이용 및 기능성 xylooligosacchade 생산에 유용하게 활용될 수 있을 것으로 기대된다.

Alkaliphilic Endoxylanase from Lignocellulolytic Microbial Consortium Metagenome for Biobleaching of Eucalyptus Pulp

  • Weerachavangkul, Chawannapak;Laothanachareon, Thanaporn;Boonyapakron, Katewadee;Wongwilaiwalin, Sarunyou;Nimchua, Thidarat;Eurwilaichitr, Lily;Pootanakit, Kusol;Igarashi, Yasuo;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1636-1643
    • /
    • 2012
  • Enzymatic pre-bleaching by modification of pulp fibers with xylanases is an attractive approach to reduce the consumption of toxic bleaching chemicals in the paper industry. In this study, an alkaliphilic endoxylanase gene was isolated from metagenomic DNA of a structurally stable thermophilic lignocellulose-degrading microbial consortium using amplification with conserved glycosyl hydrolase family 10 primers and subsequent genome walking. The full-length xylanase showed 78% sequence identity to an endo-${\beta}$-1,4-xylanase of Clostridium phytofermentans and was expressed in a mature form with an N-terminal His6 tag fusion in Escherichia coli. The recombinant xylanase Xyn3F was thermotolerant and alkaliphilic, working optimally at $65-70^{\circ}C$ with an optimal pH at 9-10 and retaining >80% activity at pH 9, $60^{\circ}C$ for 1 h. Xyn3F showed a $V_{max}$ of 2,327 IU/mg and $K_m$ of 3.5 mg/ml on birchwood xylan. Pre-bleaching of industrial eucalyptus pulp with no prior pH adjustment (pH 9) using Xyn3F at 50 IU/g dried pulp led to 4.5-5.1% increase in final pulp brightness and 90.4-102.4% increase in whiteness after a single-step hypochlorite bleaching over the untreated pulp, which allowed at least 20% decrease in hypochlorite consumption to achieve the same final bleaching indices. The alkaliphilic xylanase is promising for application in an environmentally friendly bleaching step of kraft and soda pulps with no requirement for pH adjustment, leading to improved economic feasibility of the process.

Effects of Non-starch Polysaccharide-degrading Enzymes on Nutrient Digestibility, Growth Performance and Blood Profiles of Growing Pigs Fed a Diet Based on Corn and Soybean Meal

  • Ao, X.;Meng, Q.W.;Yan, L.;Kim, H.J.;Hong, S.M.;Cho, J.H.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권12호
    • /
    • pp.1632-1638
    • /
    • 2010
  • Two experiments with growing pigs were conducted to investigate the effects of two distinct multienzyme preparations on nutrient digestibility, growth performance and blood profiles. In Exp. 1, a total of 96 pigs ($29.7{\pm}0.69\;kg$) were utilized in a 42-day performance and digestibility trial using four dietary treatments: CON (control diet), ENDO (control+0.10% Endopower), NSPase1 (control+0.10% NSPase) and NSPase2 (control+0.20% NSPase). Endopower was a commercial multienzyme preparation which contained ${\alpha}$-galactosidase, galactomannase, xylanase and ${\beta}$-glucanase. NSPase mainly contained ${\alpha}$-1,6-${\beta}$-galactosidase, ${\beta}$-1,4-mannanase and ${\beta}$-1,4-mannosidase. There were six replication pens per treatment with four pigs per pen. Pigs fed NSPase1 diet had a higher ADG (p<0.05) and G:F (p<0.05) than those fed the control diet. There were no significant differences in growth performance among the multienzyme treatments (p>0.05). Compared with CON, apparent digestibility of DM was increased (p<0.05) by ENDO treatment. N digestibility was improved (p<0.05) in response to multienzyme treatments during the experimental period. Blood urea nitrogen (BUN) was higher (p<0.05) in ENDO treatment than in CON and NSPase1 treatments at the end of the experiment, while the glucose level improved (p<0.05) due to ENDO and NSPase2 treatments. In Exp. 2, four ileal-cannulated, growing barrows ($20.17{\pm}1.31\;kg$) were housed in individual metabolism crates and randomly assigned to 1of 4 treatments (same as Exp. 1) within a $4{\times}4$ Latin square design. Enzyme supplementations improved the majority of apparent ileal amino acid digestibilities (p<0.05). It is concluded that the supplementation of NSPase1 improved growth performance as well as N digestibility and partially improved apparent ileal amino acid digestibility in growing pigs fed a diet based on corn and soybean meal.