Browse > Article
http://dx.doi.org/10.4014/jmb.1107.07022

Rice Straw-Decomposing Fungi and Their Cellulolytic and Xylanolytic Enzymes  

Lee, Sang-Joon (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University)
Jang, Yeong-Seon (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University)
Lee, Young-Min (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University)
Lee, Jae-Jung (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University)
Lee, Han-Byul (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University)
Kim, Gyu-Hyeok (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University)
Kim, Jae-Jin (Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.12, 2011 , pp. 1322-1329 More about this Journal
Abstract
Filamentous fungi colonizing rice straw were collected from 11 different sites in Korea and were identified based on characterization of their morphology and molecular properties. The fungi were divided into 25 species belonging to 16 genera, including 14 ascomycetes, one zygomycete, and one basidiomycete. Fungal cellulolytic and xylanolytic enzymes were assessed through a two-step process, wherein highly active cellulase- and/or hemicellulase-producing fungi were selected in a first screening step followed by a second step to isolate the best enzyme-producer. Twenty-five fungal species were first screened for the production of total cellulase (TC), endo-${\beta}$-1,4 glucanase (EG), and endo-${\beta}$-1,4 xylanase (XYL) using solid-state fermentation with rice straw as substrate. From this screening, six species, namely, Aspergillus niger KUC5183, A. ochraceus KUC5204, A. versicolor KUC5201, Mucor circinelloides KUC6014, Trichoderma harzianum 1 KUC5182, and an unknown basidiomycete species, KUC8721, were selected. These six species were then incubated in liquid Mandels' media containing cellulose, glucose, rice straw, or xylan as the sole carbon source and the activities of six different enzymes were measured. Enzyme production was highly influenced by media conditions and in some cases significantly increased. Through this screening process, Trichoderma harzianum 1 KUC5182 was selected as the best enzyme producer. Rice straw and xylan were good carbon sources for the screening of cellulolytic and xylanolytic enzymes.
Keywords
Cellulase; enzymatic screening; fungal diversity; rice straw; xylanase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Bailey, M. J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol 23: 257-270.   DOI   ScienceOn
2 Binod, P., R. Sindhu, R. R. Singhania, S. Vikram, L. Devi, S. Nagalakshmi, N. Kurien, R. K. Sukumaran, and A. Pandey. 2010. Bioethanol production from rice straw: An overview. Bioresour. Technol. 101: 4767-4774.   DOI   ScienceOn
3 Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
4 Chaverri, P., L. A. Castlebury, G. J. Samuels, and D. M. Geiser. 2003. Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol. Phylogenet. Evol. 27: 302-313.   DOI   ScienceOn
5 Galbe, M., P. Sassner, A. Wingren, and G. Zacchi. 2007. Process engineering economics of bioethanol production. Adv. Biochem. Eng. Biotechnol. 108: 303-327.
6 Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268.   DOI
7 Gilbert, H. J., H. Stålbrand, and H. Brumer. 2008. How the walls come crumbling down: Recent structural biochemistry of plant polysaccharide degradation. Curr. Opin. Plant Biol. 11: 338-348.   DOI   ScienceOn
8 Girio, F. M., C. Fonseca, F. Carvalheiro, L. C. Duarte, S. Marques, and R. Bogel-Lukasik. 2010. Hemicelluloses for fuel ethanol: A review. Bioresour. Technol. 101: 4775-4800.   DOI   ScienceOn
9 Harvey, P. R., P. Langridge, and D. R. Marshall. 2001. Genetic drift and host-mediated selection cause genetic differentiation among Gaeumannomyces graminis populations infecting cereals in Southern Australia. Mycol. Res. 105: 927-935.
10 Holker, U., M. Hofer, and J. Lenz. 2004. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64: 175-186.   DOI   ScienceOn
11 Hrmova, M., P. Biely, and M. Vrsanska. 1986. Specificity of cellulase and $\beta$-xylanase induction in Trichoderma reesei QM 9414. Arch. Microbiol. 144: 307-311.   DOI   ScienceOn
12 Juhasz, T., Z. Szengyel, K. Reczey, M. Siika-Aho, and L. Viikari. 2005. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem. 40: 3519-3525.   DOI   ScienceOn
13 Kamal, M. M. and M. A. T. Mia. 2009. Diversity and pathogenicity of the rice brown spot pathogen, Bipolaris oryzae (Breda de Haan) Shoem. in Bangladesh assessed by genetic fingerprint analysis. Bangladesh. J. Bot. 38: 119-125.
14 Kang, S. W., Y. S. Park, J. S. Lee, S. I. Hong, and S. W. Kim. 2004. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol. 91: 153-156.   DOI   ScienceOn
15 Keinath, A. P. 1994. Pathogenicity and host range of Fusarium oxysporum from sweet basil and evaluation of disease control methods. Plant Dis. 78: 1211-1215.   DOI   ScienceOn
16 Kikot, G. E., R. A. Hours, and T. M. Alconada. 2009. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: A review. J. Basic Microbiol. 49: 231-241.   DOI   ScienceOn
17 Kim, M.-J., H. Lee, Y. S. Choi, G.-H. Kim, N. Y. Huh, S. Lee, et al. 2010. Diversity of fungi in creosote-treated crosstie wastes and their resistance to polycyclic aromatic hydrocarbons. Antonie Van Leeuwenhoek 97: 377-387.   DOI   ScienceOn
18 Kuhad, R. C. and A. Singh. 1993. Lignocellulose biotechnology - current and future prospects. Crit. Rev. Biotechnol. 13: 151- 172.   DOI   ScienceOn
19 Larkin, M., G. Blackshields, N. Brown, R. Chenna, P. McGettigan, H. McWilliam, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.   DOI   ScienceOn
20 Maddison, D. and W. Maddison. 2005. MacClade 4: Analysis of phylogeny and character evolution. Version 4.08. Sinauer Associates, Sunderland, MA.
21 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
22 Oda, K., D. Kakizono, O. Yamada, H. Iefuji, O. Akita, and K. Iwashita. 2006. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl. Environ. Microbiol. 72: 3448-3457.   DOI   ScienceOn
23 Roberto, I. C., S. I. Mussatto, and R. C. L. B. Rodrigues. 2003. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind. Crops Prod. 17: 171- 176.   DOI   ScienceOn
24 Saha, B. C. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. 30: 279-291.   DOI   ScienceOn
25 Sandhu, D. K. and M. K. Kalra. 1982. Production of cellulase, xylanase and pectinase by Trichoderma longibrachitum on different substrates. Trans. Br. Mycol. Soc. 19: 409-413.
26 Sempere, F. and M. P. Santamarina. 2010. Study of the interactions between Penicillium oxalicum Currie & Thom and Alternaria alternata (Fr.) Keissler. Braz. J. Microbiol. 41: 700- 706.   DOI
27 Sert, H. B. and H. Sumbul. 2005. First report of leaf spot caused by Phoma sorghina on Trifolium campestre in turkey. Plant Pathol. 54: 249.   DOI   ScienceOn
28 Singhania, R. R., R. K. Sukumaran, A. K. Patel, C. Larroche, and A. Pandey. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46: 541-549.   DOI   ScienceOn
29 Stenglein, S. A., M. I. Dinolfo, M. V. Moreno, R. Galizio, and G. Salerno. 2010. Fusarium proliferatum, a new pathogen causing head blight on oat in Argentina. Plant Dis. 94: 783- 783.
30 Suto, M. and F. Tomita. 2001. Induction and catabolite repression mechanisms of cellulase in fungi. J. Biosci. Bioeng. 92: 305-311.
31 Swofford, D. 2002. Paup*: Phylogenetic analysis using parsimony (* and other methods), version 4.0 b10. Sinauer Associates, Sunderland, MA.
32 Umemoto, S., Y. Odake, T. Takeuchi, S. Yoshida, S. Tsushima, and M. Koitabashi. 2009. Blue mold of tomato caused by Penicillium oxalicum in Japan. J. Gen. Plant Pathol. 75: 399- 400.   DOI   ScienceOn
33 Yoon, J. J., K. Y. Kim, and C. J. Cha. 2008. Purification and characterization of thermostable beta-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J. Microbiol. 46: 51-55.   DOI
34 Valaskova, V. and P. Baldrian. 2006. Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus: Production of extracellular enzymes and characterization of the major cellulases. Microbiology 152: 3613-3622.   DOI   ScienceOn