• Title/Summary/Keyword: Emulsifier

Search Result 321, Processing Time 0.034 seconds

Development and Prospect of Emulsion Technology in Cosmetics (화장품에서 유화기술의 발전 및 전망)

  • Kyong, Kee-Yeol;Lee, Cheon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.4 s.59
    • /
    • pp.209-217
    • /
    • 2006
  • Emulsion is a dispersion system among liquids which are not miscible together. There are numerous cosmetic raw materials which have different physicochemical properties. Therefore, emulsion technology is very useful in cosmetics. With the development of emulsifier, several emulsification technologies have been developed. Since HLB method by Griffin in 1950's, PIT method, gel method, and D-phase methods, etc, have been developed. Recently, the application of natural emulsifier and polymeric emulsifier increases in cosmetics in order to achieve enhanced safety and biocompatibility. Besides nano-emulsion, multiple-emulsion, liquid crystal emulsion, and Pickering emulsion have been developed and applied as means of differentiating appearance and texture of products and achieving enhanced delivery of active ingredients. Meanwhile, the application studies of nano-dispersed structural system such as liposome or cubosome are on progress. Liposome is a bi- or multi-lamella layer dispersion system composed of amhiphilic molecules - phospholipids which are main components of plasma membrane. Cubosome also is a nano-sized dispersion system composed of a specific molecule like glyceryl monoloeate derived from natural products. And it has a cubic bicontinuous structure in water due to its unique molecular structure. Incorporating compounds (active materials) into such nano-particles can increase biocompatibility and delivery efficiency of target compounds. Manufacturing process and application of cosmetic emulsions and nano-particles are briefly introduced in this paper.

Influence of Coating Materials and Emulsifiers on Nanoparticles in Manufacturing Process (코팅물질과 유화제가 나노입자 제조 및 안정성에 미치는 영향)

  • Kim, Byeong-Cheol;Chun, Ji-Yeon;Park, Young-Mi;Hong, Geun-Pyo;Lee, Si-Kyong;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.32 no.2
    • /
    • pp.220-227
    • /
    • 2012
  • The objective of this study was to investigate the influence of emulsion processing with various homogenization treatments on the physical properties of nanoparticles. For the manufacturing of nanoparticles, by taking the emulsion-diffusion method, various coating materials, such as gum arabic, hydroxyethyl starch, polycarprolactone, paraffin wax, ${\kappa}$-carrageenan and emulsifiers like Tween$^{(R)}$60, Tween$^{(R)}$80, monoglyceride and Pluronic$^{(R)}$F68, were added into the emulsion system. Furthermore, the various speeds (7,000 rpm to 10,000 rpm), and times (15 s to 60 s) of homogenization were treated during the emulsion- diffusion process. NEO II homomixer was the most effective homogenizer for making nanoparticles as 51 nm ($D_{10}$) and 26 nm ($D_{50}$). To manufacture smaller nanoparticles, by using NEO II homomixer, 10,000 rpm of agitation speed, polycaprolactone as coating material, and Pluronic$^{(R)}$F68 as an emulsifier were the optimum operating conditions and components. For the stability of nanoparticles for 7 days, $20^{\circ}C$ of storage temperature was appropriate to maintain the particle size. From these results, the type of homogenizer, homogenization speed, homogenization time and storage temperature could affect the particle size. Moreover, type of coating materials and emulsifier also influenced the size and stability of the nanoparticles.

Synthesis and Water Repellency of Polymers with Fluorinated Alkyl Group and Isocyanate Group (불소화 알킬기와 이소시아네이트기를 가지는 고분자의 합성과 발수성)

  • Baek Chang-Hoon;Kong Jong-Yun;Hyun Seok-Hee;Lim Yong-Jin;Kim Woo-Sik
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.433-439
    • /
    • 2005
  • The copolymers were prepared by the emulsion copolymerization of fluoroalky lacrylate-stearylacrylate-m-isopropenyl-${\alpha},\;{\alpha}'$-dimethylbenzyl isocyanate (TMI) in order to obtain water repellent polymers. The respective copolymerization rates of the three monomers considerably depended upon the use of the nonionic emulsifier and the nonionic-cationic mixed emusifier, and the optimum conditions were obtained. The particle sizes of the copolymers were in the range of 105 to 222nm. The particle sizes of the copolymers prepared by the use of the mixed emulsifiers were smaller than those of the copolymers prepared by the use of the nonionic emulsifier. The reactions of both TMI-N-methyl acetamide and TMI-cellobiose did not take place. However, the reaction of TMI-n-butylamine occurred. The water contact angles before and after washing three times for nylon and poly(ethylene terephthalate) (PET) fabrics coated with the copolymer prepared by the use of mixed emulsifier were about $139^{\circ}\;and\;133^{\circ}$ Therefore, the copolymer showed good durable repellency for nylon and PET.

Optimization of Onion Oil Microencapsulation by Response Surface Methodology (반응표면분석법에 의한 양파유 미세캡슐화 공정의 최적화)

  • Hong, Eun-Mi;Yu, Mun-Gun;Noh, Bong-Soo;Chang, Pahn-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.437-443
    • /
    • 2002
  • Using agar and gelatin as wall materials, onion oil was microencapsulated using the extrusion spraying technology. A sensitive methodology was developed for quantitative determination of the microencapsulation yield through ethyl acetate extraction and gas chromatographic analyses. Optimal conditions for the microencapsulation process consisting of the ratio of [core material, Cm] to [wall material, Wm] ($X_1$), temperature of dispersion fluid ($X_2$), detergent concentration in dispersion fluid ($X_3$), and concentration of emulsifier $(X_4)$ were determined using response surface methodology. The regression model equation for the yield of microencapsulation (Y, %) of onion oil could be predicted as $Y\;=\;97.028571-0.775000\;(X_1)-0.746726\;(X_1){\cdot}(X_1)\;-\;1.100000\;(X_3){\cdot}(X_2)$. The optimal conditions for the microencapsulation of the onion oil were determined as the ratio of [core material] to [wall material] of 4.5 : 5.5 (w/w), the temperature of dispersion fluid of $17.1^{\circ}C$ detergent concentration in dispersion fluid of 0.03%, and the concentration of emulsifier of 0.42%. Results revealed the most stable microcapsule of onion oil could be formed with the highest yield of microencapsulation (more than 95%) under optimal conditions.

Membrane을 이용한 고분자 합성 신공정

  • 김중현
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.1-4
    • /
    • 1996
  • 유화제의 물리화학적인 성질을 이용하여 O/W와 W/O에멀젼을 제조하는 방법(예:PIT method, D-phase method)은 이제까지 많은 연구가 진행되어 왔으며, colloid mill, homogenizer, ultrasonic emulsifier와 같은 유화장치도 지속적으로 개발 및 개선되고 있다. 하지만 이들 방법은 공정의 정확한 조절이 어려우며, 제조된 에멀젼의 입자크기 분포가 다분산적(polydispersed)이라는 단점을 가지고 있다. 이를 극복하기 위한 방법으로 1980년대 중반에 일본에서 처음으로 개발된 막유화법이 있다. 이 기술은 pouous glass membrane 가운데 기공크기(pore size)가 균일한 SPG(Shirasu Porous Glass)막을 사용하여 균일한 입자분포를 가지는 에멀젼을 제조하는 것이다. 한편 막유화에 사용되는 막이 갖추어야 할 조건은 다음과 같다.

  • PDF

Lipase의 Transesterification반응에 의한 생물계면활성제의 합성

  • Sin, Yeong Min;Chung, Sook Hyun;Lee, Sang Ok;Shin, Hwa Kyoung;Lee, Tae Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.420-426
    • /
    • 1997
  • Pseudomonas sp. lipase (lipase AK) catalyzed transesterification reaction between fructose and vinyl laurate in anhydrous pyridine. The product of this process was identified as monoester of fructose and vinyl laurate. The synthetic product has been found to be an excellent emulsifier. The synthetic bioemulsifier showed a good emulsification activity and stability in comparison with other commercial emulsifiers, and good emulsification activity on various emulsifying substrates.

  • PDF

Swelling and Drug Release Behavior of Tablets Coated with Aqueous Hydroxypropyl Methylcellulose Phthalate (HPMCP) Nanoparticles

  • Kim, Il-Hyuk;Baek, Hyon-Ho;Kim, Jung-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.297.1-297.1
    • /
    • 2003
  • Organic solvent-based enteric coating technology using hydroxypropyl methylcellulose phthalate (HPMCP) has been developed for many years due to low water solubility of HPMCP. In this work, aqueous HPMCP nanoparticles (HPMCP-NPs) were prepared by neutralization emulsification method using HPMCP powder and ammonium hydroxide (NH40H) in the absence of any organic solvent and emulsifier. (omitted)

  • PDF

Preparation of Alginate Microspheres Using Membrane Emulsification Method (막유화법에 의한 알지네이트 Microsphere의 제조)

  • Youm Kyung Ho;Choi Yong Han;Dianne E. Wiley
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.218-229
    • /
    • 2004
  • We prepared monodispersed calcium alginate microspheres by controlling various conditions of emulsification procedure using a lab-scale batch type membrane emulsification system equipped with SPG (Shirasu porous glass) tubular membranes. We determined the effects of process parameters of membrane emulsification (ratio of dispersed phase to continuous phase, alginate concentration, emulsifier concentration, type and concentration of stabilizer, transmembrane pressure, concentration of crosslinking agent, stirring speed and membrane pore size) on the mean size and size distribution of alginate microspheres. The increase of the ratio of dispersed phase to continuous phase, transmembrane pressure and alginate concentration led to the increase in the mean size of alginate microspheres. On the contrary, the increase in emulsifier concentration, stirring speed of the continuous phase and concentration of the crosslinking agent caused the reduction of the mean size of microspheres. Through controlling these parameters, monodisperse alginate microspheres with about $6{\mu}{\textrm{m}}$ of the mean size and 1.1 of the size distribution value were finally prepared in case of the using SPC membrane with the pore size of $2.9{\mu}{\textrm{m}}$.

Preparation and Characterization of Biodegradable Poly($\varepsilon$-caprolactone) Microcapsules Containing Erythromycin by Emulsion Solvent Evaporation Technique (액중건조법을 이용한 항생제를 함유한 생분해성 폴리카프로락톤 마이크로캡슐의 제조 및 특성)

  • 박수진;김승학;이재락;이해방;홍성권
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.326-334
    • /
    • 2002
  • The purpose of this work was the producing of a biodegradable poly($\varepsilon$-caprolactone) (PCL) microcapsule and the analyzing of form and features for the manufacturing conditions which could be observed in a prospective drug delivery systems (DDS) through drug release. The effects of different stirring rates, stirring times and concentrations of emulsifier for the diameter and form of the microcapsules were observed using image analyzer (IA) and scanning electron microscopy (SEM). As a result, the microcapsules were made in wrinkle and spherical forms with a mean particle size of 40~300$\pm$20 $mu extrm{m}$. PCL microcapsules containing drugs were confirmed using FT-IR spectra. The role of interfacial adhesion between PCL and drug was determined by contact angle measurements. The drug release test of PCL microcapsules was characterized by UV/vis. spectra. It was found that the drug release rate of the microcapsules prepared with high concentration emulsifier was significantly fast.

Preparation and Evaluation of Bupivacaine Microspheres by a Solvent Evaporation Method (용매증발법에 의한 부피바카인 microsphere의 제조 및 평가)

  • Kwak, Son-Hyok;Hwang, Sung-Joo;Lee, Byung-Chul
    • YAKHAK HOEJI
    • /
    • v.44 no.6
    • /
    • pp.511-520
    • /
    • 2000
  • Various bupivacaine-loaded microspheres were prepared from poly (d,l-lactide) (PLA) or poly (d,l-lactic-co-glycolide) (PLGA) by a solvent evaporation method for the sustained release of drug. PLA and PLGA microspheres were prepared by w/o/w and w/o/o multiple emulsion solvent evaporation, respectively. The effects of process conditions such as emulsification speed, emulsifier type, emulsifier concentration and internal/external phase ratio on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their drug loading, size distribution, surface morphology and release kinetics. Drug loading efficiency was higher in the microspheres prepared by w/o/o multiple emulsion than that by w/o/w multiple emulsion method, because the solubility of bupivacaine HCI was decreased in oil phase compared with water phase. The prepared microspheres had an average diameter between 1 and $2\;{\mu}M$ in all conditions of two methods. In morphology studies the PLA microspheres showed an irregular shape and smooth surface, but PLGA microspheres had a spherical shape and smooth surface. The release pattern of the drug from microspheres was evaluated on the basis of the burst effect and the extent of the release after 24h. The in vitro release of bupivacaine HCl from microspheres showed a large initial burst release and $60{\sim}80%$ release within one day in all conditions of two methods. The extents of the burst release against PLA and PLGA microspheres were $30{\sim}50%$ and $50{\sim}80%$ within 20min, respectively. This burst release seems to be due to the smaller size of microspheres and the solubility of drug in water.

  • PDF