• Title/Summary/Keyword: Emitters

Search Result 307, Processing Time 0.029 seconds

Fabrication and packaging of the vacuum magnetic field sensor (자장 세기 측정용 진공 센서의 제작 및 패키징)

  • Park, Heung-Woo;Park, Yun-Kwon;Lee, Duck-Jung;Kim, Chul-Ju;Park, Jung-Ho;Oh, Myung-Hwan;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.292-303
    • /
    • 2001
  • This work reports the tunneling effects of the lateral field emitters. Tunneling effect is applicable to the VMFS(vacuum magnetic field sensors). VMFS uses the fact that the trajectory of the emitted electrons are curved by the magnetic field due to Lorentz force. Polysilicon was used as field emitters and anode materials. Thickness of the emitter and the anode were $2\;{\mu}m$, respectively. PSG(phospho-silicate-glass) was used as a sacrificial layer and it was etched by HF at a releasing step. Cantilevers were doped with $POCl_3(10^{20}cm^{-3})$. $2{\mu}m$-thick cantilevers were fabricated onto PSG($2{\mu}m$-thick). Sublimation drying method was used at releasing step to avoid stiction. Then, device was vacuum sealed. Device was fixed to a sodalime-glass #1 with silver paste and it was wire bonded. Glass #1 has a predefined hole and a sputtered silicon-film at backside. The front-side of the device was sealed with sodalime-glass #2 using the glass frit. After getter insertion via the hole, backside of the glass #1 was bonded electrostatically with the sodalime-glass #3 at $10^{-6}\;torr$. After sealing, getter was activated. Sealing was successful to operate the tunneling device. The packaged VMFS showed very small reduced emission current compared with the chamber test prior to sealing. The emission currents were changed when the magnetic field was induced. The sensitivity of the device was about 3%/T at about 1 Tesla magnetic field.

  • PDF

Emission Rates of Biogenic Volatile Organic Compounds (BVOCs) from Various Tree Species in Korea (I) (국내 수종별 BVOCs 방출량 (1))

  • Chang, Hanna;Son, Jounga;Je, Sun Mi;Oh, Chang-Young;Cho, Minseok;Kim, Juwan;Kim, Jaehyeon;Choi, Won-Sil;Lee, Young-Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.543-553
    • /
    • 2021
  • This research focused on the investigation of isoprene and terpene emissions from 30 major urban tree species. We conducted sampling using a specific dynamic enclosure system between August and September 2020. Seedlings less than three years old were enclosed in a chamber consisting of a 400 L transparent Tedlar bag. The air-flows from the chamber's outlet were sampled using Tenax-filled sorbent tubes in the presence of standard conditions (temperature: 30℃, PAR: 1,000 μmol/m2/sec). A thermal desorption GC/MS system was used to analyze 38 BVOC compounds (isoprene, monoterpene, sesquiterpene, oxygenated monoterpene, and sesquiterpene). Isoprene emitters included Phyllostachys bambusoides, Quercus serrata, Daphniphyllum macropodum, and Buxus Koreana. Monoterpene emitters included Pinus rigida, Acer pictum subsp. mono, Larix kaempfer, Magnolia denudata, Metasequoia glyptostroboides, Pinus koraiensis, Pinus densiflora, and Abies holophylla. The monoterpene emission profiles were dominated by α-pinene, myrcene, limonene, β-pinen, and sabinene, while caryophyllene and farnesene were the prominent sesquiterpenes. Predominant oxygenated monoterpene compounds were also discovered as pulegone, borneol, menthol, eucalyptol, and nerol, while caryophyllene oxide were the prominent oxygenated sesquiterpenes. Sesquiterpenes and oxygenated sesquiterpenes had relatively lower contributions for all species.

Emission Rates of Biogenic Volatile Organic Compounds from Various Tree Species in Korea (II): Major Species in Urban Forests (국내 수종별 BVOCs 방출량(II): 도시 숲 주요 수종)

  • Hanna, Chang;Jounga, Son;Juwan, Kim;Junhyuk, Kim;Yeongseong, Kim;Won-Sil, Choi;Young-Kyu, Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.490-501
    • /
    • 2022
  • In this study, the isoprene and terpene emissions from 32 major urban tree species were investigated. We conducted sampling using a dynamic enclosure system between June and July 2021. Seedlings aged < three years were enclosed in a chamber consisting of a 400 L transparent Tedlar bag. The air flow from the outlet of the chamber was sampled using Tenax-filled sorbent tubes under standard conditions (temperature: 30°C; PAR: 1,000 μmol/m2/sec). A thermal desorption gas chromatography/mass spectrometry system was used to analyze the following 38 biogenic volatile organic compounds: isoprene, monoterpenes, sesquiterpenes, oxygenated monoterpenes, and oxygenated sesquiterpenes. Isoprene emitters included Quercus mongolica, Salix koreensis, Robinia pseudoacacia, and Salix chaenomeloides. Monoterpene emitters included Pinus strobus, Cedrela sinensis, and Cercis chinensis. The monoterpene emission profiles were dominated by á-pinene, myrcene, camphene, and limonene. The predominant oxygenated monoterpene and oxygenated sesquiterpene were eucalyptol and caryophyllene oxide, respectively. For all species, the contributions of sesquiterpenes and oxygenated sesquiterpenes were relatively low.

Fabrication of Triode Type Field Emission Device Using Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition (열 화학 기상 증착법을 이용한 삼극관 구조의 탄소 나노 튜브 전계 방출 소자의 제조)

  • Yu W. J.;Cho Y. S.;Choi G. S.;Kim D. J.
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.542-546
    • /
    • 2004
  • We report a new fabrication process for high performance triode type CNT field emitters and their superior electrical properties. The CNT-based triode-type field emitter structure was fabricated by the conventional semiconductor processes. The keys of the fabrication process are spin-on-glass coating and trim-and-leveling of the carbon nanotubes grown in trench structures by employing a chemical mechanical polishing process. They lead to strong adhesion and a uniform distance from the carbon nanotube tips to the electrode. The measured emission property of the arrays showed a remarkably uniform and high current density. The gate leakage current could be remarkably reduced by coating of thin $SiO_{2}$ insulating layer over the gate metal. The field enhancement factor(${\beta}$) and emission area(${\alpha}$) were calculated from the F-N plot. This process can be applicable to fabrication of high power CNT vacuum transistors with good electrical performance.

Sheathless electrospray ionization with integrated metal emitter on microfluidic device (전기 분무 이온화를 이용한 단백질 질량분석용 마이크로 유체 소자의 제작 및 실험)

  • Kim, Min-Su;Joo, Hwang-Soo;Lee, Kook-Nyung;Kim, Byung-Gee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2102-2104
    • /
    • 2004
  • In this study, sheathless electrospray from PDMS/glass microchips with conducting metal emitter tip is described. A chip-based capillary electrophoresis/mass spectrometry (CE/MS) system has advantages of the CE separation and on-line electrospray detection of peptide solution. We have fabricated a new electrospray ionization(ESI) device composed of the metal emitter tip and CE separation channel monolithically in a glass microchip. The separation channel and metal emitter tip are fabricated using a glass wet etching and gold electro plating process, respectively. The fabricated micro electrospray chip was tested by spraying peptide sample for mass spectrometric analysis. Singlely-charged peak and doublely-charged peak of peptide were detected and further MS/MS fragmentation was performed in each peak. Direct comparisons with conventional glass or fused silica emitters showed very similar performance with respect to signal strength and stability.

  • PDF

Carbon Nanotube Synthesis and Growth Using Zeolite by Catalytic CVD and Applications

  • Zhao, Wei;Nam, Seo Dong;Pokhrel, Ashish;Gong, Jianghong;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • Since their first discovery, carbon nanotubes (CNTs) have become a material central to the field of nanotechnology. Owing to their splendid physical, structural and chemical properties, they have the potential to impact a wide range of applications, including advanced ceramics, nanoelectronic devices, nanoscale sensors, solar cells, battery electrodes, and field emitters. This review summarizes the synthetic methods of preparing CNTs and focuses on the chemical vapor deposition (CVD) method, especially catalytic CVD. In order to stabilize and disperse the catalyst nanoparticles (NPs) during synthesis, zeolite was implemented as the template to support metal-containing NPs, so that both CNTs in the bulk and on a 2D substrate were successfully synthesized. Despite more challenges ahead, there is always hope for widespread ever-new applications for CNTs with the development of technology.

Layer-by-layer Control of MoS2 Thickness by ALET

  • Kim, Gi-Hyeon;Kim, Gi-Seok;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.234.1-234.1
    • /
    • 2015
  • Molybdenum disulfide (MoS2)는 van der Waals 결합을 통한 층상구조의 물질로써 뛰어난 물리화학적, 기계적 특성으로 Field Effect Transistors (FETs), Photoluminescence, Photo Detectors, Light Emitters 등의 많은 분야에서 연구가 보고 되어지고 있는 차세대 2D-materials이다. 이처럼 MoS2 가 다양한 범위에 응용될 수 있는 이유는 layer 수가 증가함에 따라 1.8 eV의 direct band gap 에서 1.2 eV 의 indirect band-gap으로 특성이 변화할 뿐만 아니라 다양한 고유의 전기적 특성을 지니고 있기 때문이다. 그러나 MoS2 는 원자층 단위의 layer control 이 어렵다는 이유로 다양한 전자소자 응용에 많은 제약이 보고 되어졌다. 본 연구에서는 MoS2 의 layer를 control 하기 위해 ICP system 에서 mesh grid 를 삽입하여 Cl2 radical을 효과적으로 adsorption 시킨 뒤, Ion beam system 에서 Ar+ Ion beam 을 통해 한 층씩 제거하는 방식의 atomic layer etching (ALE) 공정을 진행하였다. ALE 공정시 ion bombardment 에 의한 damage 를 최소화하기 위해 Quadruple Mass Spectrometer (QMS) 를 통한 에너지 분석으로 beam energy 를 20 eV에서 최적화 할 수 있었고, Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy(AFM) 분석을 통해 ALE 공정에 따른 MoS2 layer control 가능 여부를 증명할 수 있었다.

  • PDF

Characteristics of Carbon Nanotube FED

  • Uemura, Sashiro;Yotani, Junko;Nagasako, Takeshi;Kurachi, Hiroyuki;Yamada, Hiromu;Ezaki, Tomotaka;Maesoba, Tsuyoshi;Nakao, Takehiro;Ito, Masaaki;Saito, Yahachi;Yumura, Motoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.860-865
    • /
    • 2004
  • Field emission display(FED) using carbon nanotubes (CNT) as field emitters is expected to large-area panels with high luminance and low power consumption. In order to perform the uniform luminance with low driving voltage, we introduced a new electrode to apply higher electric potential over the CNT cathode in 2003.[1] In the study, we described the luminance uniformity of the panel and the improvement of emission uniformity by increasing the emission-site density. The luminance uniformity of the several ideal dots which were selected over the display area in the panel was 2.8%. [2] The CNT cathode was irradiated by excimer-laser, which was effective to improve emission uniformity and lower driving voltage. A prototype of CNT-FED character display was performed for middle size message displays. The prototype panel had 48 x 480-dots and the resolution was 1-mm. The panel realized high luminance at low power consumption. It will be important characteristics for legible and ubiquitous displays. [3]

  • PDF

Analysis of Selective Emitter Properties Apply for Low Cost Metallization in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지의 저가형 금속전극에 적용되기 위한 Selective emitter 특성 분석)

  • Kim, Min-Jeong;Lee, Ji-Hun;Cho, Kyeong-Yeon;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.454-455
    • /
    • 2009
  • Selective emitter structure have an important research subject for crystalline silicon solar cells because it is used in production for high efficiency solar cells. A selective emitter structure with highly doped regions underneath the metal contacts is widely known to be one of the most promising high-efficiency solution in solar cell processing. Since most of the selective emitter processes require expensive extra masking and double steps process. Formation of selective emitters is not cost effective. One method that satisfies these requirements is the method of screen-printing with a phosphorus doping paste. In this paper we researched two groups of selective emitter structure process. One was using dopant paste, and the other was using solid source, in order to compare their uniformity, sheet resistance and performance condition time.

  • PDF

Studies of electron emitters for a miniaturized electron column design (초소형 전자 칼럼 설계를 위한 전자 방출원 연구)

  • Kim, Young-Chul;Kim, Dae-Wook;Ahn, Seung-Joon;Kim, Ho-Seob;Jang, Won-Kweon
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.314-318
    • /
    • 2002
  • We examine the adjustment of the semiconvergent angle and current for the miniaturized micro column working at low voltage but producing maximized current. Our study shows that the minimum electron beam sizes are 10 ㎚ for the cold field emitter (CFE) and 20 ㎚ for the thermal field emitter (TFE) at a given condition.