Browse > Article
http://dx.doi.org/10.4191/kcers.2013.50.1.1

Carbon Nanotube Synthesis and Growth Using Zeolite by Catalytic CVD and Applications  

Zhao, Wei (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University)
Nam, Seo Dong (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University)
Pokhrel, Ashish (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University)
Gong, Jianghong (Department of Materials Science and Engineering, Tsinghua University)
Kim, Ik Jin (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University)
Publication Information
Abstract
Since their first discovery, carbon nanotubes (CNTs) have become a material central to the field of nanotechnology. Owing to their splendid physical, structural and chemical properties, they have the potential to impact a wide range of applications, including advanced ceramics, nanoelectronic devices, nanoscale sensors, solar cells, battery electrodes, and field emitters. This review summarizes the synthetic methods of preparing CNTs and focuses on the chemical vapor deposition (CVD) method, especially catalytic CVD. In order to stabilize and disperse the catalyst nanoparticles (NPs) during synthesis, zeolite was implemented as the template to support metal-containing NPs, so that both CNTs in the bulk and on a 2D substrate were successfully synthesized. Despite more challenges ahead, there is always hope for widespread ever-new applications for CNTs with the development of technology.
Keywords
Carbon nanotubes; Catalyst; Chemical vapor deposition; Zeolite; Nanoparticle; Self-assemble;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, H. J. Dai, R. B. Laughlin, L. Liu, C. S. Jayanthi, and S. Y. Wu, "Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides," Phys. Rev. Lett., 87 106801 (1-4) (2001).   DOI   ScienceOn
2 C. W. Zhou, J. Kong, and H. J. Dai, "Electrical Measurements of Individual Semiconducting Single-walled Carbon Nanotubes of Various Diameters," Appl. Phys. Lett., 76 1597-9 (2000).   DOI   ScienceOn
3 D. Yokoyama, T. Iwasaki, K. Ishimaru, S. Sato, T. Hyakushima, M. Nihei, Y. Awano, and H. Kawarada, "Electrical Properties of Carbon Nanotubes Grown at a Low Temperature for Use as Interconnects," Jpn. J. Appl. Phys., 47 1985-90 (2008)   DOI
4 A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. J. Dai, "Ballistic Carbon Nanotube Field-effect Transistors," Nature, 424 654-7 (2003).   DOI   ScienceOn
5 P. Avouris, "Molecular Electronics with Carbon Naontubes," Acc. Chem. Res., 35 1026-34 (2002).   DOI   ScienceOn
6 A. D. Carlo, A. Pecchia, E. Petrolati, and C. Paoloni, in Nanomodeling II, pp. 632808-11, SPIE, San Diego, CA, USA 2006.
7 A. Naeemi and J. D. Meindl, "Design and Performance Modeling for Single-walled Carbon Nanotubes as Local, Semiglobal, and Global Interconnects in Gigascale Integrated Systems," IEEE Trans. Electron. Dev., 54 26-37 (2007).   DOI   ScienceOn
8 P. C. Collins, M. S. Arnold, and P. Avouris, "Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown," Science, 292 706-9 (2001).   DOI   ScienceOn
9 S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, "Carbon Nanotube Quantum Resistors," Science, 280 1744-6 (1998).   DOI   ScienceOn
10 A. Naeemi and J. D. Meindl, "Compact Physical Models for Multiwall Carbon Nanotube Interconnects," IEEE Electron Device Lett., 27 338-40 (2006).   DOI   ScienceOn
11 M. Endo, T. Hayashi, Y. A. Kim, M. Terrones, and M. S. Dresselhaus, "Applicaions of Carbon Nanotubes in the Twenty-first Century," Phil. Trans. R. Soc. Lond. A, 362 2223-38 (2004).   DOI   ScienceOn
12 J. Hone, M. Whitney, and A. Zettl, "Thermal Conductivity of Single-walled Carbon Nanotubes," Synth. Met., 103 2498-9 (1999).   DOI   ScienceOn
13 E. Pop, D. Mann, Q. Wang, K. Goodson, and H. J. Dai, "Thermal Conductance of an Individual Single-wall Carbon Nanotube above Room Temperature," Nano. Lett., 6 96-100 (2006).   DOI   ScienceOn
14 P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, "Thermal Transport Measurements of Individual Multiwalled Nanotubes," Phys. Rev. Lett., 87 215502 (1-4) (2001).
15 W. A. de Heer, A. Chatelain, and D. Ugarte, "A Carbon Nanotube Field Emission Electron Source," Science, 270 1179-80 (1995).   DOI   ScienceOn
16 R. H. Fowler and L. Nordheim, "Electron Emission in Intense Electric Fields," Proc. R. Soc. London, Ser. A, 119, 173-81 (1928).   DOI
17 S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, "Self-oriented Regular Arrays of Carbon Nanotubes and their Field Emission Properties," Science, 283 512-4 (1999).   DOI   ScienceOn
18 Y. Cheng. and O. Zhou, "Electron Field Emission from Carbon Nanotubes," C. R. Physique, 4 1021-33 (2003).   DOI   ScienceOn
19 N. S. Lee, D. S. Chung, I. T. Han, J. H. Kang, Y. S. Choi, H. Y. Kim, S. H. Park, Y. W. Jin, W. K. Yi, M. J. Yun, J. E. Jung, C. J. Lee, J. H. You, S. H. Jo, C. G. Lee, and J. M. Kim, "Application of Carbon Nanotubes to Field Emission Displays," Diamond and Related Materials, 10 265-70 (2001).   DOI   ScienceOn
20 W. A. de Heer, A. Chatelain, and D. Ugarte, "A Carbon Nanotube Field-emission Electron Source," Science, 270 1179-80 (1995).   DOI   ScienceOn
21 J. M. Bonard, J. P. Salvetat, T. Stockli, W. A. deHeer, L. Forro, and A. Chatelain, "Field Emission from Single-wall Carbon Nanotube Films," Appl. Phys. Lett., 73 918-20 (1998).   DOI   ScienceOn
22 M. L. Toebes, J. H. Bitter, A. J. van Dillen, and K. P. de Jong, "Impact of the Structure and Reactivity of Nickel Particles on the Catalytic Growth of Carbon Nanofibers," Catal. Today, 76 33-42 (2002).   DOI   ScienceOn
23 W. Zhao, M. J. Lee, H. T. Kim, and I. J. Kim, "The Synthesis of Carbon Nanotubes (CNTs) by Catalytic CVD Using A Fe/co-supported Zeolite Template," Electro. Mater. Lett., 7 139-44 (2011).   DOI   ScienceOn
24 H. Ago, S. Imamura, T. Okazaki, T. Saitoj, M. Yumura, and M. Tsuji, "CVD Growth of Single-walled Carbon Nanotubes with Narrow Diameter Distribution over Fe/MgO Catalyst and their Fluorescence Spectroscopy," J. Phys. Chem. B, 109 10035-41 (2005).   DOI   ScienceOn
25 K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, "Water-assisted Highly Efficient Synthesis of Impurity-free Single-walled Carbon Nanotubes," Science, 306 1362-4 (2004).   DOI   ScienceOn
26 R. Andews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. dickey, and J. Chen, "Continuous Production of Aligned Carbon Nanotubes: A Step Closer to Commercial Realization," Chem. Phys. Lett., 303 467-74 (1999).   DOI   ScienceOn
27 B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco, "Controlled Production of Single-wall Carbon Nanotubes by Catalytic Decomposition of CO on Bimetallic Co- Mo Catalysts," Chem. Phys. Lett., 317 497-503 (2000).   DOI   ScienceOn
28 R. T. K. Baker and R. J. Waite, "Formation of Carbonaceous Deposits from the Platinum-iron Catalyzed Decomposition of Acetylene," J. Catalysis, 37 101-5 (1975).   DOI   ScienceOn
29 M. Kumar and Y. Ando, "Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production," J. Nanosci. Nanotechnol., 10 3739-58 (2010).   DOI   ScienceOn
30 R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, "Nuleation and Growth of Carbon Deposits from the Nickel Catalyzed Decomposition of Acetylene," J. Catalysis, 26 51-62 (1972).   DOI   ScienceOn
31 M. Meyyappan, "Carbon Nanotubes Science and Application," pp: 110-6, CRC Press LLC, 2005.
32 K. S. Trianatafyllidis, S. A. Karakoulia, D. Gournis, A. Delimitis, L. Nalbandian, E. Maccallini, and P. Rudolf, "Formation of Carbon Nanotubes on Iron/cobalt Oxides Supported on Zeolite-Y: Effect of Zeolite Textural Properties and Particles Morphology," Micropourous and Mesoporous Materials, 110 128-40 (2008).   DOI   ScienceOn
33 M. J. Behr, K. A. Mkhoyan, and E. S. Aydil, "Orientation and Morphological Evolution of Catalyst Nanoparticles during Carbon Nanotube Growth," ACS Nano, 4 5087-94 (2010).   DOI   ScienceOn
34 W. Zhao, H. S. Kim, D. N. Seo, H. T. Kim, and I. J. Kim, "Assembled Monolayer of Silicalite-1-supported Iron Oxide Nanoparticles for Carbon Nanotube Growth by Catalytic CVD (CCVD)," Asian J. Chem., 24 5249-52 (2012).
35 T. Hayashi, Y. A. Kim, T. Matoba, M. Esaka, K. Nishimura, T. Tsukada, M. Endo, and M. S. Dresselhaus, "Smallest Freestanding Single-walled Carbon Nanotube," Nano. Lett., 3 887-9 (2003).   DOI   ScienceOn
36 J. S. Lee, J. H. Kim, Y. J. Lee, N. C. Jeong, and K. B. Yoon, "Manual Assembly of Microcrystal Monolayers on Substrates," Angew. Chem. Int. Ed., 46 3087-90 (2007).   DOI   ScienceOn
37 T. V. Hughes and C. R. Chambers, "Manufacture of Carbon Filaments," USA Patent No. 405 480 (1889).
38 N. N. Greenwood and E. Earnshaw, "Chemistry of the Elements," 299-307, Butterworth-Heinermann, 1984.
39 S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Roomtemperature Transistor based on a Single Carbon Nanotube," Nature, 393 49-52 (1998).   DOI
40 M. Reibold, P. Paufler, A. A. Levin, W. Kochmann, N. Patzke, and D. C. Meyer, "Materials: Carbon Nanotubes in an Ancient Damascus Sabre," Nature, 444 286-6 (2006).   DOI   ScienceOn
41 A. Oberlin, M. Endo, and T. Koyama, "Filamentous Growth of Carbon through Benzene Decomposition," J. Cryst. Growth, 32 335-49 (1976).   DOI   ScienceOn
42 S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature, 354 56-8 (1991).   DOI
43 D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, "Cobalt-catalysed Growth of Carbon Nanotubes with Single-atomic-layer Walls," Nature, 363 605-7 (1993).   DOI   ScienceOn
44 S. Iijima and T. Ichihashi, "Single-shell Carbon Nanotubes of 1-nm Diameter," Nature, 363 603-5 (1993).   DOI   ScienceOn
45 A. P. Graham, G. S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl, and E. Unger, "How do Carbon Nanotubes Fit into the Semiconductor Roadmap?," Appl. Phys. A: Mater. Sci. Process., 80 1141-51 (2005).   DOI   ScienceOn
46 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, "Physical Properties of Carbon Nanotubes," 47-99, Imperial College Press, London, 1998.
47 G. D. Nessim, "Properties, Synthesis, and Growth Mechanisms of Carbon Nanotubes with Special Focus on Thermal Chemical Vapor Deposition," Nanoscale, 2 1306-23 (2010).   DOI   ScienceOn
48 Z. Xu, X. D. Bai, Z. L. Wang, and E. G. Wang, "Multiwall Carbon Nanotubes Made of Monochirality Graphite Shells," J. Am. Chem. Soc., 128 1052-3 (2006).   DOI   ScienceOn
49 "The longest carbon nanotubes you've ever seen," http:// www.nsf.gov/news/news_summ.jsp?cntn_id=108992.
50 H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, and P. M. Ajayan, "Direct Synthesis of Long Single-walled Carbon Nanotube Strands," Science, 296 884-6 (2002).   DOI   ScienceOn
51 M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, "Science of Fullerenes and Carbon Nanotubes," 15-54, Academic Press, SanDiego, 1996.
52 H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, "Optical Properties of Singlewall Carbon Nanotubes," Synth. Met., 103 2555-8 (1999).   DOI   ScienceOn
53 C. H. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, "Thermal Conductance and Thermopower of an Individual Single- wall Carbon Nanotube," Nano. Lett., 5 1842-6 (2005).   DOI   ScienceOn
54 C. Dekker, "Carbon Nanotubes as Molecular Quantum Wires," Phys. Today, 52 22-8 (1999).
55 P. L. McEuen, "Single-wall Carbon Nanotubes," Phys. World, 13 31-6 (2000).
56 P. G. Collins, A. Zettle, H. Bando, A. Thess, and R. E. Smalley, "Nanotube Nanodevice," Science, 278 100-2 (1997).   DOI   ScienceOn
57 R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, "Carbon Nanotube Actuators," Science, 284 1340-4 (1999).   DOI   ScienceOn
58 H. Dai, "Controlling Nanotube Growth," Phys. World, 13 43-7 (2000).
59 C. Liu, Y. Tong, H. M. Cheng, D. Golberg, and Y. Bando, "Field Emission Properties of Macroscopic Single-walled Carbon Nanotube Strands," Appl. Phys. Lett., 86, 223114 (1-2) (2005).
60 H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu, "Multichannel Ballistic Transport in Multiwall Carbon Nanotubes," Phys. Rev. Lett., 95 086601 (1-4) (2005).   DOI   ScienceOn
61 J. P. Lu, "Elastic Properties of Carbon Nanotubes and Nanoropes," Phys. Rev. Lett., 79 1297-300 (1997).   DOI   ScienceOn
62 J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kuik, L. Forro, W. Benoit, and L. Zuppiroli, "Mechanical Properties of Carbon Nanotubes," Appl. Phys. A: Mater. Sci. Process., 69 255-60 (1999).   DOI   ScienceOn
63 E. T. Thostenson, Z. Ren, and T. W. Chou, "Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review," Comp. Sci. Tech., 61 1899- 912 (2001).   DOI   ScienceOn
64 M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, "Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties," Phys. Rev. Lett., 84 5552-5 (2000).   DOI   ScienceOn
65 A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, "Young's Modulus of Single-walled Nanotubes," Phys. Rev. B: Condens. Matter, 58,14013-9 (1998).   DOI
66 G. Zhou, W. Duan, and B. Gu, "First-principles Study on Morphology and Mechanical Properties of Single-walled Carbon Nanotubes," Chem. Phys. Lett., 333 344-9 (2001).   DOI   ScienceOn
67 Z. Yao, C. C. Zhu, M. Cheng, and J. Liu, "Mechanical Properties of Carbon Nanotube by Molecular Dynamics Simulation," Comput. Mater. Sci., 22 180-4 (2001).   DOI   ScienceOn
68 B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A Zettl, and R. O. Ritchie, "Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes," Mater. Sci. Eng. A, 334 173-8 (2002).   DOI   ScienceOn
69 "Carbon nanotubes in photovoltaics," Wikepedia,(the free encyclopedia) http://en.wikipedia.org/wiki/Carbon_nanotubes_ in_ photovoltaics.
70 H. W. Zhu, J. Q. Wei, K. L. Wang, and D. H. Wu, "Applications of Carbon Materials in Photovoltaic Solar Cells," Solar Energy Materials and Solar Cells, 93 1461-70 (2009).   DOI   ScienceOn
71 S. Barazzouk, S. Hotchandani, K. Vinodgopal, and P. V. Kamat, "Single-wall Carbon Nanotube Films for Photocurrent Generation. A Prompt Response to Visible-light Irradiation," J. Phys. Chem. B, 108 17015-8 (2004).   DOI   ScienceOn
72 P. Castrucci, F. Tombolini, M. Scarselli, E. Speiser, S. D. Gobbo, W. Richter, M. D. Crescenzi, M. Diociaiuti, E. Gatto, and M. Venanzi, "Large Photocurrent Generation in Multiwall Carbon Nanotubes," Appl. Phys. Lett., 89 253107 (2006).   DOI   ScienceOn
73 W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "Solid C60: A New Form of Carbon," Nature, 347 354-8 (1990).   DOI
74 B. I. Yakobson, and R. E. Smalley, "Fullerene Nanotubes: $C_{1,000,000}$ and Beyond," Am. Sci., 85 324-37 (1997).
75 T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, "Catalytic Growth of Single-walled Nanotubes by Laser Vaporization," Chem. Phys. Lett., 243 49-54 (1995).   DOI   ScienceOn
76 P. Eklund, A. Pulickel, R. Blackmon, A. J. Hart, J. Kong, P. Bhabendra, A. Rao, and R. Rinzler, International Assessment of Research and Development n carbon Nanotubes: Manufacturing and Applications, World Technology Evaluation Center, Baltimore, Maryland 21210, USA, 2007, http://www.wtec.org/cnm/.
77 W. Zhao, D. N. Seo, H. T. Kim, I. J. Kim, "Characterization of Multi-walled Carbon Nanotubes (MWNTs) Synthesized by CCVD using Zeolite Template from Acetylene," J. Ceram. Soc. Jpn, 118 983-8 (2010).   DOI   ScienceOn
78 I. Willems, Z. Konya, J. F. Colomer, G. V. Tendeloo, N. Nagaraju, A. Fonseca, and J. B. Nagy, "Control of Outer Diameter of Thin Carbon Nanotubes Synthesized by Catalytic Decomposition of Hydrocarbons," Chem. Phys. Lett., 317 71-6 (2000).   DOI   ScienceOn
79 D. Ding, J. Wang, Z. Cao, and J. Dai, "Synthesis of Carbon Nanostructures on Nanocrystalline $Ni-Ni_{3}P$ Catalyst Supported by SiC Whiskers," Carbon, 41 579-82 (2003).   DOI   ScienceOn
80 C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber, "Diameter Controlled Synthesis of Carbon Nanotubes," J. Phys. Chem. B, 106 2429-33 (2002).   DOI   ScienceOn
81 M. Kumar and Y. Ando, "Controlling the Diameter Distribution of Carbon Nanotubes Grown from Camphor on a Zeolite Support," Carbon, 43 533-40 (2005).   DOI   ScienceOn
82 J. Ward, B. Q. Wei, and P. M. Ajayan, "Substrate Effects on the Growth of Carbon Nanotubes by Thermal Decomposition of Methane," Chem. Phys. Lett., 376 717-25 (2003).   DOI   ScienceOn
83 M. Karthik, A. Vinu, A. K. Tripathi, N. M. Gupta, M. Palanichamy, and V. Murugesan, "Synthesis, Characterization and Catalytic Performance of Mg and Co Substituted Mesoporous Aluminophosphates," Micropor. Mesopor. Mater., 70 15-25 (2004).   DOI   ScienceOn
84 H. J. Lee, Y. M. Kim, O. S. Kweon, and I. J. Kim, "Structural and Morphological Transformation of NaX Zeolite Crystals at High Temperature," J. Eur. Ceram. Soc., 27 561-4 (2007).   DOI   ScienceOn
85 I. J. Kim, W. Zhao, X. Fan, J. H. Chang, and L. J. Gauckler, "Effect of the $TEOS/Al(i-pro)_{3}$ Mol Ratio in the Composition on the Crystal Morphology of Zeolites," J. Ceram. Res. Proc., 11 158-63 (2010).
86 P. M. Ajayan, "Nanotubes from Carbon," Chem. Rev., 99 1787-9 (1999).   DOI   ScienceOn
87 K. P. De Jong and J. W. Geus, "Carbon Nanofibers: Catalytic Synthesis and Application," Catal. Rev.-Sci. Eng., 42 481-510 (2000).   DOI   ScienceOn
88 J. Kong, A. M. Cassell, and H. J. Dai, "Chemical Vapor Deposition of Methane for Single-walled Carbon Nanotubes," Chem. Phys. Lett., 292 567-74 (1998).   DOI   ScienceOn
89 J. H. Hafner, M. J. Bronikowski, B. R. Azomian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, and R. E. Smalley, "Catalytic Growth of Single-wall Carbon Nanotubes from Metal Particles," Chem. Phys. Lett., 296 195-202 (1998).   DOI   ScienceOn
90 M. Cinke, J. Li, B. Chen, A. Cassell, L. Delzeit, J. Han, and M. Meyyappan, "Pore Structure of Raw and Purified HiPco Single-walled Carbon Nanotubes," Chem. Phys. Lett., 365 69-74 (2002).   DOI   ScienceOn
91 Z. Yao, C. L. Kane, and C. Dekker, "High-field Electrical Transport in Single-wall Carbon Nanotubes," Phys. Rev. Lett., 84 2941-4 (2000).   DOI   ScienceOn
92 J. Hone, M. Whitney, C. Piskoti, and A. Zett, "Thermal Conductivity of Single-walled Carbon Nanotubes," Phys. Rev. B, 59 R2514-6 (1999).   DOI   ScienceOn
93 S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, "Chemistry of Singlewalled Carbon Nanotubes," Acc. Chem. Res., 35 1105-13 (2002).   DOI   ScienceOn
94 E. T. Thosterson, C. Li, and T. W. Chou, "Nanocomposites in Context," Compos. Sci. Technol., 65 491-516 (2005).   DOI   ScienceOn
95 M. Ouyang, J. L. Huang, and C. M. Lieber, "Fundamental Electronic Properties and Applications of Single-walled Carbon Nanotubes," Acc. Chem. Res. 35, 1018-25 (2002).   DOI   ScienceOn
96 K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, A. Fudala, and A.A. Lucas, "Catalytic Synthesis of Carbon Nanotubes Using Zeolite Support," Zeolites, 17 416-23 (1996).   DOI   ScienceOn
97 W. Zhao, M. J. Lee, H. T. Kim, and I. J. Kim, "The Synthesis of Carbon Nanotubes (CNTs) by Catalytic CVD Using Fe/Co-supported Zeolite Template," Electro. Mater. Lett., 7 139-44 (2011).   DOI   ScienceOn
98 W. Zhao, D. N. Seo, H. S. Kim, H. T. Kim, and I. J. Kim, "Carbon Nanotubes Synthesized by Catalytic Chemical Vapour Deposition Using Fe-supported Zeolite," Asian J. Chem., 23 2314-8 (2011).
99 C. M. Veziri, G. N. Karanikolos, G. Pilatos, E. C. Vermisoglou, K. Giannakopoulos, C. Stogios, and N. K. Kanellopoulos, "Growth and Morphology Manipulation of Carbon Nanostructures on Porous Supports," Carbon, 47 2161-73 (2009).   DOI   ScienceOn
100 A. Fonseca, K. Hernadi, J. B. Nagy, D. Bernaerts, and A. Lucas, "Optimization of Catalytic Production and Purification of Buckytubes," J. Mol. Catal. A, 107 159-68 (1996).   DOI   ScienceOn
101 W. Zhao, M. J. Lee, H. T. Kim, Y. J. Kim, J. H. Gong, and I. J. Kim, "Formation of Multi-walled Carbon Nanotubes by Catalytic Chemical Vapour Deposition Using Zeolite Encapsulated Nanocrystalline Cobalt Oxides," Asian J. Chem., 23 5457-60 (2011).
102 A. R. Harutyunyan, "Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production," J. Nanosci. Nanotechnol., 9 2480 (2009).   DOI   ScienceOn
103 W. Zhao, H. S. Kim, H. T. Kim, J. H. Gong and I. J. Kim, "Synthesis and Growth of Multi-walled Carbon Nanotubes (MWNTs) by CCVD Using Fe-supported Zeolite Templates," J. Ceram. Proc. Res., 12 ,392-7 (2011).
104 R. S. Wagner and W. C. Ellis, "Vapor-liquid-solid Mechanism of Single Crystal Growth," Appl. Phys. Lett., 4 89-90 (1964).   DOI
105 S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, "Monodisperse $MFe_{2}O_{4}$ (M = Fe, Co, Mn) Nanoparticles," J. Am. Chem. Soc., 126 ,273-9 (2004).   DOI   ScienceOn
106 L. D. Shao, G. Tobias, C. G. Salzmann, B. Ballesteros, S. Y. Hong, A. Crossley, B. G. Davis, and M. L. H. Green, "Removal of Amorphous Carbon for the Efficient Sidewall Functionalization of Single-walled Carbon Nanotubes," Chem. Commun., 5090-2 (2007).
107 A. C. Ferrari and J. Robertson, "Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamondlike Carbon," Phys. Rev. B, 64 075414(1-13) (2001).   DOI   ScienceOn
108 A. C. Ferrari and J. Robertson, "Origin of the 1150-cm-1 Raman Mode in Nanocrystalline Diamond," Phys. Rev. B, 63 121405(1-4) (2001).   DOI   ScienceOn
109 E. Kymakis, I. Alexandrou, and G. A. J. Amaratunga, "High Open-circuit Voltage Photovoltaic Devices from Carbon-nanotube-polymer Composites," Progress in Photovoltaics: Res. Appl., 93, 1764-8 (2003).