• Title/Summary/Keyword: Embedded TFT-LCD

Search Result 30, Processing Time 0.028 seconds

Low Power 260k Color TFT LCD Driver IC

  • Kim, Bo-Sung;Ko, Jae-Su;Lee, Won-Hyo;Park, Kyoung-Won;Hong, Soon-Yang
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.288-296
    • /
    • 2003
  • In this study, we present a 260k color TFT LCD driver chip set that consumes only 5 mW in the module, which has exceptionally low power consumption. To reduce power consumption, we used many power-lowering schemes in the logic and analog design. A driver IC for LCDs has a built-in graphic SRAM. Besides write and read operations, the graphic SRAM has a scan operation that is similar to the read operation of one row-line, which is displayed on one line in an LCD panel. Currently, the embedded graphic memory is implemented by an 8-transistor leaf cell and a 6-transistor leaf cell. We propose an efficient scan method for a 6-transistor embedded graphic memory that is greatly improved over previous methods. The proposed method is implemented in a 0.22 ${\mu}m$ process. We demonstrate the efficacy of the proposed method by measuring and comparing the current consumption of chips with and without our proposed scheme.

  • PDF

A Study on Wireless Sensor Node Control Using Embedded System (임베디드 시스템을 활용한 무선 센서노드 제어에 관한 연구)

  • Choi, Sin-Hyeong;Han, Kun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1141-1145
    • /
    • 2007
  • Rapid development of high-micro device design and wireless mobile communication technique enables each information instrument and devices to form intelligent network. The discussion of ubiquitous computing that provide information when and where desired is advanced actively. Information collected through ubiquitous sensor network assists it will be able to provide a convenient and accurate service. In this paper, we design and implement system which shows in realtime through TFT/LCD display device sensing data transmitted in embedded system instead of host pc.

  • PDF

The Initialization of a TFT LCD and Implementation of Library Functions for an LN2440SBC Embedded System (LN2440SBC 임베디드 시스템을 위한 TFT LCD 초기화 및 그래픽스 라이브러리 함수 구현)

  • Kim, Byoung Kuk;Park, Geun Duk;Oh, Sam Kweon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.639-642
    • /
    • 2009
  • LN2440SBC 임베디드 보드는 ARM 코어 방식의 S3C2440A CPU를 가진 임베디드 컴퓨터 시스템이다. 이 시스템에 부착한 터치스크린 기능을 가진 TFT LCD 키트인 LP35의 구동을 위해서는 ARM 코어, LCD 컨트롤러, 그리고 LCD 장치와의 통신을 위한 SPI(serial peripheral interface)의 초기화와 LCD 화면에 이미지, 선, 도형 같은 것들의 출력을 가능하게 해주는 그래픽스 라이브러리 함수들이 필요하다. 본 논문은 이같은 기능들을 가지는 LP35를 위한 드라이버의 구현 방법을 기술한다. 특히, 드라이버 구동을 위한 초기화 방법과 화면 출력 기능들의 구현을 위해 필요한 픽셀 디스플레이 함수의 구현에 중점을 두어 설명한다. 또한 픽셀 디스플레이 함수를 이용한 기본 그래픽스 라이브러리 함수들에 대해 설명한다. 드라이버의 초기화를 위해서는 클럭 속도 설정, 범용 입출력 핀(GPIO)을 LCD와 SPI 용으로의 할당. SPI의 마스터/슬레이브 및 보오 레이트 설정, LCD 컨트롤러 레지스터 설정을 통한 LCD 기능 선택. 그리고 SPI를 통한 LCD 장치로의 파워 온(power on) 명령 전달 등이 수행된다.

Hangul Porting and Display Performance Comparison of an Embedded System (임베디드 시스템을 위한 한글 포팅 및 출력 성능 비교)

  • Oh, Sam-Kweon;Park, Geun-Duk;Kim, Byoung-Kuk
    • Journal of Digital Contents Society
    • /
    • v.10 no.4
    • /
    • pp.493-499
    • /
    • 2009
  • Three methods frequently used for Hangul display in computer systems are Standard Johab Code in which each of Hangul consonants and vowels is given a 5-bit code and each syllable created by combining them forms a 2-byte code, Standard Wansung Code in which each of all the syllables generally used for Hangul presentation forms a 2-byte code, and Unicode in which each syllable in most of the world's language systems is given a unique code so that it allows computers to consistently represent and manipulate them in a unified manner. An embedded system in general has a lower processing power and a limited amount of storage space, compared to a personal compute(PC) system. According to its usage, however, the former may have a processing power equal to that of the latter. Hence, when Hangul display needs to be adopted, an embedded system must choose a display method suitable for its own resource environment. This paper introduces a TFT LCD initialization method and pixel display functions of an LN2440SBC embedded board on which an LP35, a 3.5" TFT LCD kit, is attached. Using the initialization and pixel display functions, in addition, we compare three aforementioned Hangul display methods, in terms of their processing speeds and amounts of memory space required. According to experiments, Standard Johab Code requires less amount of memory space but more processing time than Standard Wansung Code, and Unicode requires the largest amount of memory space but the least processing time.

  • PDF

Design and Implementation of Low-Power GUI for Real-Time Operating System (실시간 운영체제를 위한 저전력 GUI 설계 및 구현)

  • Jeong, Jae-Yeop;Lee, Cheol-Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.817-821
    • /
    • 2007
  • A technique which uses the energy for a long time have been recognized as a important problem in embedded system with restricted battery. Recently the energy consumption is increased by using a large size of TFT-LCD and touch screen in embedded system. In this paper, we studied the frame buffer monitoring which can be reduced an energy consumption in GUI. The frame buffer monitoring technique is the energy degrade plan which adjusts Refresh-rate and Backlight. The technique must guarantee the quality of screen.

  • PDF

Comparison of Stability on the Nano-crystalline Embedded InGaZnO and Amorphous InGaZnO Oxide Thin-film Transistors (나노결정 InGaZnO 산화물 박막트랜지스터와 비결정 InGaZnO 산화물 박막트랜지스터의 소자 신뢰성에 관한 비교 연구)

  • Shin, Hyun-Soo;Ahn, Byung-Du;Rim, Yoo-Seung;Kim, Hyun-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.473-479
    • /
    • 2011
  • In this paper, we have compared amorphous InGaZnO (a-IGZO) thin-film transistor (TFT) with the nano-crystalline embedded-IGZO ($N_c$-embedded-IGZO) TFT fabricated by solid-phase crystallization (SPC) technique. The field effect mobility (${\mu}_{FE}$) of $N_c$-embedded-IGZO TFT was 2.37 $cm^2/Vs$ and the subthreshold slope (S-factor) was 0.83 V/decade, which showed lower performance than those of a-IGZO TFT (${\mu}_{FE}$ of a-IGZO was 9.67 $cm^2/Vs$ and S-factor was 0.19 V/decade). This results originated from generation of oxygen vacancies in oxide semiconductor and interface between gate insulator and semiconductor due to high temperature annealing process. However, the threshold voltage shift (${\Delta}V_{TH}$) of $N_c$-embedded-IGZO TFT was 0.5 V, which showed 1 V less shift than that of a-IGZO TFT under constant current stress during $10^5$ s. This was because there were additionally less increase of interface trap charges in Nc-embedded-IGZO TFT than a-IGZO TFT.

Design of Source Driver for QVGA-Scale LDI Using Mixed Driving Method (Mixed Driving 방식을 이용한 QVGA급 LDI의 Source Driver 설계)

  • Kim, Hak-Yun;Ko, Young-Keun;Lee, Sung-Woo;Choi, Ho-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.40-47
    • /
    • 2009
  • In this paper, we present the design of a source driver of QVGA scale TFT-LCD driver IC which uses a mixed driving method and performs $\gamma$-correction to improve image. The source driver with 240 RGB ${\times}$ 320 dots resolution drives a TFT-LCD panel through 720 channels and implements 262k colors using 18-bit RGB data format. The mixed driving method is a mixture the channel amp. driving method with high drivability and the gray amp. driving method with small area, which remarkably reduces channel driver areas. The driver has been designed using the $0.35{\mu}m$ Magnachip embedded DRAM technology and simulated using the HSPICE simulator. The results show that our source driver operates well with y-correction and the channel driver has $17{\mu}s$ channel driving time with only 78 driving amplifiers and control logic.

Design and Implementation for Image Monitoring System using Qt/Embedded (QT/임베디드 기반의 화상 감시시스템 설계 몇 구현)

  • 노방현
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.236-240
    • /
    • 2004
  • We have implemented image monitoring system on PXA255 processor based embedded board that is ported QT/Embedded 2.3.7 version. User is able to monitor camera's capture image for widely separated host PC at client PXA255 board target board by ethernet communication method. And we designed PCI interface card that control motor for camera's Pan & Tilt. Bitmap format's images of $320\times{240}$ size are displayed on PXA255 board's TFT-LCD and User is able to monitor wanted position's image by touch screen input method.

  • PDF

Characteristics of embedded TFT memory on glass substrate

  • Yu, Hui-Uk;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.260-260
    • /
    • 2010
  • 현대 사회가 고도의 정보화 사회로 변화하는 가운데 능동행렬 액정 표시 소자(AMLCD : Active Matrix Liquid Crystal Display)는 정보 디스플레이 분야에서 없어서는 안될 중요한 위치를 차지하게 됐다. AMOLED는 자체발광형이므로 LCD에 비해 시야각, contrast, 시인성이 우수하며, 화소를 낮은 전류 밀도로 구동시킨다는 장점이 있다. OLED 소자는 각 화소를 구동할 수 있는 박막 트랜지스타가 필요하며, OLED 소자와 결합된 TFT의 연구도 진행되고 있다. 더욱이 모바일 소자에서 낮은 구동 전압과 비용의 절감을 위해 System On Panels (SOP)에 대한 연구가 또한 진행되고 있다. LCD 패널위에 콘트롤러와 메모리와 같은 소자를 직접화시킴으로써 액정 표시 장치를 소형화시킬 수 있으며 신뢰성을 향상시킬 수가 있다. 본 연구에서는 SOP를 위한 ELA 방법을 통하여 결정화한 poly-Si TFT memory를 제작하여 전기적 특성을 조사하였다.

  • PDF

Device driver for SoC actuator IP driving (SoC 액츄에이터 IP 구동을 위한 디바이스 드라이버)

  • Gang Sang-Woo;Park Jong-Seong;Moon Cheol-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.407-410
    • /
    • 2004
  • This paper describes an embedded system to put a SoC actuator IP in motion and linux drivers. The If that a embedded linux among embedded OS is ported is implemented as linux driver. The actuator IP is controlled by application programming. To make users use this easily, a QT is ported on the system. Application program can operate the actuator IP device driver on TFT LCD.

  • PDF