• Title/Summary/Keyword: Ellipsoid modeling

Search Result 21, Processing Time 0.037 seconds

Ellipsoid Modeling Method for Coding of Face Depth Picture

  • Park, Dong-jin;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.245-250
    • /
    • 2019
  • In this paper, we propose an ellipsoid modeling method for coding of a face depth picture. The ellipsoid modeling is firstly based on a point of a nose tip which is defined as the lowest value of the depth in the picture. The proposed ellipsoid representation is simplified through a difference of depth values between in the nose tip and in left or right boundary point of the face. Parameters of the ellipsoid are calculated through coordinates and depth values to minimize differences from the actual depth pixels. A picture is predicted by the modeled ellipsoid for coding of the face depth picture. In simulation results, an average MSEs between the face depth picture and the predicted picture is measured as 20.3.

Dynamic Modeling and Manipulability Analysis of Underwater Robotic Arms (수중로봇팔의 동역학 모델링과 동적 조작도 해석)

  • Jnn Bong-Huan;Lee Jihong;Lee Pan-Mook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.688-695
    • /
    • 2005
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The manipulability is a functionality of manipulator system in a given configuration under the limits of joint ability with respect to the task required to be performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method is presented. The dynamic equation of motion of underwater manipulator is derived based on the Lagrange-Euler equation considering with the hydrodynamic forces caused by added mass, buoyancy and hydraulic drag. The hydrodynamic drag term in the equation is established as analytical form using Denavit-Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based oil manipulability ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torques in joint space, while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid as much as gravity and velocity dependent forces in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

The Variable Ellipsoid Modeling Technique as a Verification Method for the Treatment Planning System of Gamma Knife Radiosurgery

  • Hur, Beong-Ik;Choi, Byung-Kwan;Sung, Soon-Ki;Cho, Won-Ho;Cha, Seung-Heon;Choi, Chang-Hwa
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.2
    • /
    • pp.128-133
    • /
    • 2010
  • Objective : The secondary verification of Leksell Gamma Knife treatment planning system (LGP) (which is the primary verification system) is extremely important in order to minimize the risk of treatment errors. Although prior methods have been developed to verify maximum dose and treatment time, none have studied maximum dose coordinates and treatment volume. Methods : We simulated the skull shape as an ellipsoid with its center at the junction between the mammillary bodies and the brain stem. The radiation depths of the beamlets emitted from 201 collimators were calculated based on the relationship between this ellipsoid and a single beamlet expressed as a straight line. A computer program was coded to execute the algorithm. A database system was adopted to log the doses for $31{\times}31{\times}31$ or 29,791 matrix points allowing for future queries to be made of the matrix of interest. Results : When we compared the parameters in seven patients, all parameters showed good correlation. The number of matrix points with a dose higher than 30% of the maximal dose was within ${\pm}\;2%$ of LGP. The 50% dose volume, which is generally the target volume, differs maximally by 4.2%. The difference of the maximal dose ranges from 0.7% to 7%. Conclusion : Based on the results, the variable ellipsoid modeling technique or variable ellipsoid modeling technique (VEMT) can be a useful and independent tool to verify the important parameters of LGP and make up for LGP.

Dynamic Manipulability Analysis of Underwater Robotic Arms with Joint Velocities (관절속도를 가지는 수중로봇팔의 동적 조작도 해석)

  • JEON BONG-HWAN;LEE JIHONG;LEE PAN-MOOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.204-209
    • /
    • 2004
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The Manipulability is a functionality of manipulator system in a given configuration and under the limits of joint ability with respect to the tasks required to bt performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method are presented. The dynamic equation of motion of underwater manipulator is derived from the Lagrange - Euler equation considering with the hydraulic forces caused by added mass, buoyancy and hydraulic drag. The hydraulic drag term in the equation: is established as analytical form using Denavit - Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based on Manipulability Ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torque in joint space while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

  • PDF

Singularity and manipulability analysis of a wheeled mobile manipulator

  • Kim, Sungbok;Lee, Jaeyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.104.1-104
    • /
    • 2002
  • $\textbullet$ Proper definition of manipulability ellipsoid $\textbullet$ Volume and directional measures of manipulability $\textbullet$ Kinematic modeling as a serial connection $\textbullet$ Configuration dependent singularity $\textbullet$ Effect of nonholonomy on manipulability $\textbullet$ Effect of end-effector positioning on manipulability $\textbullet$ Effect of serial cooperation on manipulability

  • PDF

Human Limbs Modeling from 3D Scan Data (3차원 스캔 데이터로부터의 인체 팔, 다리 형상 복원)

  • Hyeon, Dae-Eun;Yun, Seung-Hyeon;Kim, Myeong-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • This paper presents a new approach for modeling human limbs shape from 3D scan data. Based on the cylindrical structure of limbs, the overall shape is approximated with a set of ellipsoids through ellipsoid fitting and interpolation of fit-ellipsoids. Then, the smooth domain surface representing the coarse shape is generated as the envelope surface of ellipsoidal sweep, and the fine details are reconstructed by constructing parametric displacement function on the domain surface. For fast calculation, the envelope surface is approximated with ellipse sweep surface, and points on the reconstructed surface are mapped onto the corresponding ellipsoid. We demonstrate the effectiveness of our approach for skeleton-driven body deformation.

  • PDF

Quantization Parameter Determination Method for Face Depth Image Encoding (깊이 얼굴 영상 부호화에서의 양자화 인자 결정 방법)

  • Park, Dong-Jin;Kwon, Soon-Kak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.1
    • /
    • pp.13-23
    • /
    • 2020
  • In this paper, we propose a quantization parameter determination method for face depth image encoding in order to minimize an impact on a face recognition accuracy. When a face depth image is compressed through quantization in H.264/AVC, differential quantization parameters are assigned according to an accuracy of ellipsoid modeling prediction and an importance degree of a unit block in extracting facial features. The simulation results show that the face recognition success rates are improved by up to 6% at the same compression rates through the proposed compression rate determination method.

Fisheye Image Correction with Ellipsoid Model (타원체 모형을 통한 어안 영상 보정)

  • Kim, Hyun-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.177-182
    • /
    • 2015
  • General method for correcting the distortion caused by the characteristic of the fish-eye lens may be classified in two ways. The first method is a calibration method using a mathematical model taking into account the characteristics of the lens, the second method is a method using only the distortion correction image, regardless of the lens. When considering the characteristics of the lens, calibration equation can be calculated geometrically from the relationship between the three-dimensional real-world coordinates and two-dimensional image coordinates and the parameters of lens. However, it is not suitable for ellipsoid type lens, because of existing research papers have been corrected on the spherical-type fisheye lens. In this paper, we propose a method for correcting geometrically using fish-eye lens as an ellipsoid model. Through a calibration picture, it can be seen that the proposed method is valid.

Ellipsoidal bounds for static response of framed structures against interactive uncertainties

  • Kanno, Yoshihiro;Takewaki, Izuru
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.103-121
    • /
    • 2008
  • This paper presents an optimization-based method for computing a minimal bounding ellipsoid that contains the set of static responses of an uncertain braced frame. Based on a non-stochastic modeling of uncertainty, we assume that the parameters both of brace stiffnesses and external forces are uncertain but bounded. A brace member represents the sum of the stiffness of the actual brace and the contributions of some non-structural elements, and hence we assume that the axial stiffness of each brace is uncertain. By using the $\mathcal{S}$-lemma, we formulate a semidefinite programming (SDP) problem which provides an outer approximation of the minimal bounding ellipsoid. The minimum bounding ellipsoids are computed for a braced frame under several uncertain circumstances.

Clinical Application of Gamma Knife Dose Verification Method in Multiple Brain Tumors : Modified Variable Ellipsoid Modeling Technique

  • Hur, Beong Ik;Lee, Jae Min;Cho, Won Ho;Kang, Dong Wan;Kim, Choong Rak;Choi, Byung Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.2
    • /
    • pp.102-107
    • /
    • 2013
  • Objective : The Leksell Gamma Knife$^{(R)}$ (LGK) is based on a single-fraction high dose treatment strategy. Therefore, independent verification of the Leksell GammaPlan$^{(R)}$ (LGP) is important for ensuring patient safety and minimizing the risk of treatment errors. Although several verification techniques have been previously developed and reported, no method has ever been tested statistically on multiple LGK target treatments. The purpose of this study was to perform and to evaluate the accuracy of a verification method (modified variable ellipsoid modeling technique, MVEMT) for multiple target treatments. Methods : A total of 500 locations in 10 consecutive patients with multiple brain tumor targets were included in this study. We compared the data from an LGP planning system and MVEMT in terms of dose at random points, maximal dose points, and target volumes. All data was analyzed by t-test and the Bland-Altman plot, which are statistical methods used to compare two different measurement techniques. Results : No statistical difference in dose at the 500 random points was observed between LGP and MVEMT. Differences in maximal dose ranged from -2.4% to 6.1%. An average distance of 1.6 mm between the maximal dose points was observed when comparing the two methods. Conclusion : Statistical analyses demonstrated that MVEMT was in excellent agreement with LGP when planning for radiosurgery involving multiple target treatments. MVEMT is a useful, independent tool for planning multiple target treatment that provides statistically identical data to that produced by LGP. Findings from the present study indicate that MVEMT can be used as a reference dose verification system for multiple tumors.