Browse > Article
http://dx.doi.org/10.33851/JMIS.2019.6.4.245

Ellipsoid Modeling Method for Coding of Face Depth Picture  

Park, Dong-jin (Dept. of Computer Software Engineering, Dongeui University)
Kwon, Soon-kak (Dept. of Computer Software Engineering, Dongeui University)
Publication Information
Journal of Multimedia Information System / v.6, no.4, 2019 , pp. 245-250 More about this Journal
Abstract
In this paper, we propose an ellipsoid modeling method for coding of a face depth picture. The ellipsoid modeling is firstly based on a point of a nose tip which is defined as the lowest value of the depth in the picture. The proposed ellipsoid representation is simplified through a difference of depth values between in the nose tip and in left or right boundary point of the face. Parameters of the ellipsoid are calculated through coordinates and depth values to minimize differences from the actual depth pixels. A picture is predicted by the modeled ellipsoid for coding of the face depth picture. In simulation results, an average MSEs between the face depth picture and the predicted picture is measured as 20.3.
Keywords
Ellipsoid Modeling; Depth Picture; Face Recognition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. A. Turk and A. P. Pentland, "Face Recognition Using Eigenfaces," in Proceeding of IEEE Computer Society Conference on Computer Vision and pattern Recognition, 586-591, 1991.
2 L. C. Paul and A. A. Suman, "Face Recognition Using Principal Component Analysis Method," International Journal of Advanced Research in Computer Engineering & Technology, vol. 1, no. 9, pp. 135-139, 2012.
3 D. G. Lowe, "Object Recognition from Local Scale-invariant Features," in Proceeding of the International
4 P. Viola, and M. J. Jones, "Rapid Object Detection Using A Boosted Cascade of Simple Features," in Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 511-518, 2001.
5 S. K. Kwon, H. J. Kim, and D. S. Lee, D.S, "Face Recognition Method Based on Local Binary Pattern Using Depth Images," Journal of the Korea Industrial Information Systems Research, vol. 22, no. 6, pp. 39-45, 2017.   DOI
6 S. K. Kwon, "Face Recognition Using Depth and Infrared Pictures," in Proceeding of IEICE Nonlinear Theory and Its Applications, vol. 10, no. 1, pp. 2-15, 2019.   DOI
7 S. Grewatsch and E. Muller, "Evaluation of Motion Compensation and Coding Strategies for Compression of Depth Map Sequences," in Proceeding of the Mathematics of Data/Image Coding, Compression, and Encryption VII, with Applications, pp. 117-125, 2004.
8 Y. Morvan, D. Farin, and P. H. N. deWith, "Depth-image Compression Based on An R-D Optimized Quadtree Decomposition for The Transmission of Multiview Images," in Proceeding of the IEEE International Conference on Image Processing, pp. V105-V108, 2007.
9 S. Milani and G. Calvagno, "A Depth Image Coder Based on Progressive Silhouettes," IEEE Signal Process. Letters, vol. 17, no. 8, pp. 711-714, 2010.   DOI
10 G. Shen, W. Kim, S. Narang, A. Orterga, J. Lee, and H. Wey, "Edge Adaptive Transform for Efficient Depth Map Coding," in Proceeding of Picture Coding Symposium, pp. 566-569, 2010.
11 M. Maitre and M. Do, "Depth and Depth-Color Coding Using Shape Adaptive Wavelets," Journal of Visual Communication and Image Representation, vol. 21 (5-6), pp. 513-522, 2010.   DOI
12 J. Fu, D. Miao, W. Yu, S. Wang, Y. Lu, and S. Li, "Kinect-Like Depth Data Compression," IEEE Transactions on Multimedia, vol. 15, no. 6, pp. 1340-1352, 2013.   DOI
13 D. S. Lee and S. K. Kwon, "Intra Prediction of Depth Picture with Plane Modeling," Symmetry, vol. 10, pp. 1-16, 2018.   DOI
14 S. K. Kwon, D. S. Lee, and Y. H. Park, "Depth Video Coding Method for Spherical Object," Journal of the Korea Industrial Information Systems Research, vol. 21, no. 6, pp. 23-29, 2016.   DOI
15 R. I. Hg, P. Jasek, C. Rofidal, K. Nasrollahi, and T. B. Moeslund, "An RGB-D Database Using Microsoft's Kinect for Windows for Face Detection," in Proceeding of the IEEE 8th International Conference on Signal Image Technology & Internet Based Systems, pp. 42-46, 2012.