• Title/Summary/Keyword: Ellipsoid method

Search Result 100, Processing Time 0.045 seconds

Ellipsoid Modeling Method for Coding of Face Depth Picture

  • Park, Dong-jin;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.245-250
    • /
    • 2019
  • In this paper, we propose an ellipsoid modeling method for coding of a face depth picture. The ellipsoid modeling is firstly based on a point of a nose tip which is defined as the lowest value of the depth in the picture. The proposed ellipsoid representation is simplified through a difference of depth values between in the nose tip and in left or right boundary point of the face. Parameters of the ellipsoid are calculated through coordinates and depth values to minimize differences from the actual depth pixels. A picture is predicted by the modeled ellipsoid for coding of the face depth picture. In simulation results, an average MSEs between the face depth picture and the predicted picture is measured as 20.3.

An Efficient Method for Aneurysm Volume Quantification Applicable in Any Shape and Modalities

  • Chung, Jaewoo;Ko, Jung Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.514-523
    • /
    • 2021
  • Objective : Aneurysm volume quantification (AVQ) using the equation of ellipsoid volume is widely used although it is inaccurate. Furthermore, AVQ with 3-dimensional (3D) rendered data has limitations in general use. A novel universal method for AVQ is introduced for any diagnostic modality and application to any shape of aneurysms. Methods : Relevant AVQ studies published from January 1997 to June 2019 were identified to determine common methods of AVQ. The basic idea is to eliminate the normal artery volume from 3D model with the aneurysm. After Digital Imaging and Communications in Medicine (DICOM) data is converted and exported to stereolithography (STL) file format, the 3D STL model is modified to remove the aneurysm and the volume difference between the 3D model with/without the aneurysm is defined as the aneurysm volume. Fifty randomly selected aneurysms from DICOM database were used to validate the different AVQ methods. Results : We reviewed and categorized AVQ methods in 121 studies. Approximately 60% used the ellipsoid method, while 24% used the 3D model. For 50 randomly selected aneurysms, volumes were measured using 3D Slicer, RadiAnt, and ellipsoid method. Using 3D Slicer as the reference, the ratios of mean difference to mean volume obtained by RadiAnt and ellipsoid method were -1.21±7.46% and 4.04±30.54%, respectively. The deviations between RadiAnt and 3D Slicer were small despite of aneurysm shapes, but those of ellipsoid method and 3D Slicer were large. Conclusion : In spite of inaccuracy, ellipsoid method is still mostly used. We propose a novel universal method for AVQ that is valid, low cost, and easy to use.

Human Gender and Motion Analysis with Ellipsoid and Logistic Regression Method

  • Ansari, Md Israfil;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.3 no.2
    • /
    • pp.9-12
    • /
    • 2016
  • This paper is concerned with the effective and efficient identification of the gender and motion of humans. Tracking this nonverbal behavior is useful for providing clues about the interaction of different types of people and their exact motion. This system can also be useful for security in different places or for monitoring patients in hospital and many more applications. Here we describe a novel method of determining identity using machine learning with Microsoft Kinect. This method minimizes the fitting or overlapping error between an ellipsoid based skeleton.

Weighted Least Square-Based Magnetometer Calibration Method Robust in Roll-Pitch Limited Conditions (롤피치 제한 조건에 강인한 가중 최소자승법 기반 마그네토미터 캘리브레이션 기법)

  • Jeon, Tae-Hyeong;Lee, Jung-Keun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.259-265
    • /
    • 2017
  • Magnetometer calibration must be performed before the use of three-axis magnetometers to ensure the accuracy of orientation estimation. Recently, one of the most popular calibration approaches is the ellipsoid fitting technique due to its high performance in calibration. To date, in fact, performances of the existing ellipsoid fitting methods have been evaluated with full range rotation data. However, in case of the calibration of magnetometers attached to vehicles, ships, and planes, it is very difficult to collect the full range rotation data since their allowable ranges in terms of roll and pitch are limited to small. This constraint may result in serious performance degradation of some ellipsoid fitting algorithms. Therefore, to be practical, this paper proposes a weighted least square-based magnetometer calibration method that is robust in roll-pitch limited conditions. Furthermore, the proposed method is a linear approach and thus is free from the well-known initial value issue in nonlinear approaches. Experimental results show the superiority of the proposed method to other ellipsoid-fitting calibration methods.

Acceleration ellipsoid of two cooperating robots with the limits of joint torques (동역학이 고려된 두 대 로봇의 가속도 타원 해석)

  • 이지홍;이원희
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2717-2720
    • /
    • 2003
  • A mathematical framework for deriving acceleration bounds from given joint torque limits of two cooperating robots are described in this paper. Especially when the torque limits are given in 2-norm, the resultant geometrical configuration is ellipsoid(the ellipsoid is often called manipulability ellipsoid in many works). At first, the mathematical derivation starts from the dynamics of both object and robots as well as the kinematics of the robots, and is finally arranged in a form of equation relating joint torques to object acceleration through a complete constraint contact(or “very-soft contact”). To show the usefulness of the proposed method, two examples are included, and especially the case where friction effects the ellipsoid shape is also considered In the example.

  • PDF

Method of tumor volume evaluation using magnetic resonance imaging for outcome prediction in cervical cancer treated with concurrent chemotherapy and radiotherapy

  • Kim, Hun-Jung;Kim, Woo-Chul
    • Radiation Oncology Journal
    • /
    • v.30 no.2
    • /
    • pp.70-77
    • /
    • 2012
  • Purpose: To evaluate the patterns of tumor shape and to compare tumor volume derived from simple diameter-based ellipsoid measurement with that derived from tracing the entire tumor contour using region of interest (ROI)-based 3D volumetry with respect to the prediction outcome in cervical cancer patients treated with concurrent chemotherapy and radiotherapy. Materials and Methods: Magnetic resonance imaging was performed in 98 patients with cervical cancer (stage IB-IIIB). The tumor shape was classified into two categories: ellipsoid and non-ellipsoid shape. ROI-based volumetry was derived from each magnetic resonance slice on the work station. For the diameter-based surrogate "ellipsoid volume," the three orthogonal diameters were measured to calculate volume as an ellipsoid. Results: The more than half of tumor (55.1%) had a non-ellipsoid configuration. The predictions for outcome were consistent between two volume groups, with overall survival of 93.6% and 87.7% for small tumor (<20 mL), 62.9% and 69.1% for intermediate-size tumor (20-39 mL), and 14.5% and 16.7% for large tumors (${\geq}$40 mL) using ROI and diameter based measurement, respectively. Disease-free survival was 93.8% and 90.6% for small tumor, 54.3% and 62.7% for intermediate-size tumor, and 13.7% and 10.3% for large tumor using ROI and diameter based method, respectively. Differences in outcome between size groups were statistically significant, and the differences in outcome predicted by the tumor volume by two different methods. Conclusion: Our data suggested that large numbers of cervical cancers are not ellipsoid. However, simple diameter-based tumor volume measurement appears to be useful in comparison with ROI-based volumetry for predicting outcome in cervical cancer patients.

Dynamic Modeling and Manipulability Analysis of Underwater Robotic Arms (수중로봇팔의 동역학 모델링과 동적 조작도 해석)

  • Jnn Bong-Huan;Lee Jihong;Lee Pan-Mook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.688-695
    • /
    • 2005
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The manipulability is a functionality of manipulator system in a given configuration under the limits of joint ability with respect to the task required to be performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method is presented. The dynamic equation of motion of underwater manipulator is derived based on the Lagrange-Euler equation considering with the hydrodynamic forces caused by added mass, buoyancy and hydraulic drag. The hydrodynamic drag term in the equation is established as analytical form using Denavit-Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based oil manipulability ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torques in joint space, while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid as much as gravity and velocity dependent forces in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

The Ellipsoid Method for ILP Problem and its Application (ILP를 위한 타원법과 그 응용)

  • 김준홍
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.11 no.17
    • /
    • pp.15-23
    • /
    • 1988
  • The subject in this paper is to apply the ellipsoid method proposed by khachiyan〔1〕 to ILP systems. For solving ILP problems we will present a algorithm using the modified formular of Pallaschke〔2〕. Additionally, computational results indicate that out algorithm is subject to the numerical stability.

  • PDF

Ellipsoidal Agreement Analysis between Bessel 1841 and GRS80 in Korea by Astrogeodtic Geoid (천문측지지오이드에 의한 Bessel1841과 GRS80의 우리나라에의 타원체 적합성 분석)

  • Lee, Suk-Bae;Sim, Jung-Min
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.17-20
    • /
    • 2007
  • Many countries have changed her geodetic reference system from local system to global system because of the global network's necessity And, also Korean geodetic reference system changed from Tokyo datum to Global geodetic reference system since 2003 as the revision of Survey Law and Korean reference ellipsoid changed from Bessel 1841 ellipsoid to GRS80. Astronomic surveying has been regarded as an important method for absolute positioning of geodetic datum in each countries under the local geodetic reference system. This paper aims to analyses distribution of geoidal heights and ellipsoidal agreement between Bessel 1841 and GRS80 ellipsoid in Korea through comparing both astrogeotic geoidal heights referred to GRS80 and Bessel 1841 ellipsoid by astronomic surveying data which have been surveyed after 1970 in Korea.

  • PDF

Dynamic Manipulability Analysis of Underwater Robotic Arms with Joint Velocities (관절속도를 가지는 수중로봇팔의 동적 조작도 해석)

  • JEON BONG-HWAN;LEE JIHONG;LEE PAN-MOOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.204-209
    • /
    • 2004
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The Manipulability is a functionality of manipulator system in a given configuration and under the limits of joint ability with respect to the tasks required to bt performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method are presented. The dynamic equation of motion of underwater manipulator is derived from the Lagrange - Euler equation considering with the hydraulic forces caused by added mass, buoyancy and hydraulic drag. The hydraulic drag term in the equation: is established as analytical form using Denavit - Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based on Manipulability Ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torque in joint space while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

  • PDF