Browse > Article
http://dx.doi.org/10.3857/roj.2012.30.2.70

Method of tumor volume evaluation using magnetic resonance imaging for outcome prediction in cervical cancer treated with concurrent chemotherapy and radiotherapy  

Kim, Hun-Jung (Department of Radiation Oncology, Inha University Hospital, Inha University School of Medicine)
Kim, Woo-Chul (Department of Radiation Oncology, Inha University Hospital, Inha University School of Medicine)
Publication Information
Radiation Oncology Journal / v.30, no.2, 2012 , pp. 70-77 More about this Journal
Abstract
Purpose: To evaluate the patterns of tumor shape and to compare tumor volume derived from simple diameter-based ellipsoid measurement with that derived from tracing the entire tumor contour using region of interest (ROI)-based 3D volumetry with respect to the prediction outcome in cervical cancer patients treated with concurrent chemotherapy and radiotherapy. Materials and Methods: Magnetic resonance imaging was performed in 98 patients with cervical cancer (stage IB-IIIB). The tumor shape was classified into two categories: ellipsoid and non-ellipsoid shape. ROI-based volumetry was derived from each magnetic resonance slice on the work station. For the diameter-based surrogate "ellipsoid volume," the three orthogonal diameters were measured to calculate volume as an ellipsoid. Results: The more than half of tumor (55.1%) had a non-ellipsoid configuration. The predictions for outcome were consistent between two volume groups, with overall survival of 93.6% and 87.7% for small tumor (<20 mL), 62.9% and 69.1% for intermediate-size tumor (20-39 mL), and 14.5% and 16.7% for large tumors (${\geq}$40 mL) using ROI and diameter based measurement, respectively. Disease-free survival was 93.8% and 90.6% for small tumor, 54.3% and 62.7% for intermediate-size tumor, and 13.7% and 10.3% for large tumor using ROI and diameter based method, respectively. Differences in outcome between size groups were statistically significant, and the differences in outcome predicted by the tumor volume by two different methods. Conclusion: Our data suggested that large numbers of cervical cancers are not ellipsoid. However, simple diameter-based tumor volume measurement appears to be useful in comparison with ROI-based volumetry for predicting outcome in cervical cancer patients.
Keywords
Cervical cancer; Magnetic resonance imaging; Tumor volume; Concurrent chemotherapy and radiotherapy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hricak H. Cancer of the uterus: the value of MRI pre- and post-irradiation. Int J Radiat Oncol Biol Phys 1991;21:1089-   DOI   ScienceOn
2 Santoni R, Bucciolini M, Chiostrini C, Cionini L, Renzi R. Quantitative magnetic resonance imaging in cervical carcinoma: a report on 30 cases. Br J Radiol 1991;64:498-504.   DOI   ScienceOn
3 Sironi S, Belloni C, Taccagni G, DelMaschio A. Invasive cervical carcinoma: MR imaging after preoperative chemotherapy. Radiology 1991;180:719-22.   DOI
4 Hatano K, Sekiya Y, Araki H, et al. Evaluation of the therapeutic effect of radiotherapy on cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 1999;45:639-44.   DOI   ScienceOn
5 Mayr NA, Magnotta VA, Ehrhardt JC, et al. Usefulness of tumor volumetry by magnetic resonance imaging in assessing response to radiation therapy in carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 1996;35:915-24.   DOI   ScienceOn
6 Ohno Y, Kusumoto M, Kono M. Evaluation of therapeutic effect using enhanced MRI in lung cancer: evaluation of methods in terms of necrosis. Nihon Igaku Hoshasen Gakkai Zasshi 1997;57:783-90.
7 Mayr NA, Yuh WT, Zheng J, et al. Tumor size evaluated by pelvic examination compared with 3-D quantitative analysis in the prediction of outcome for cervical cancer. Int J Radiat Oncol Biol Phys 1997;39:395-404.   DOI   ScienceOn
8 Hricak H, Quivey JM, Campos Z, et al. Carcinoma of the cervix: predictive value of clinical and magnetic resonance (MR) imaging assessment of prognostic factors. Int J Radiat Oncol Biol Phys 1993;27:791-801.   DOI   ScienceOn
9 Flueckiger F, Ebner F, Poschauko H, Tamussino K, Einspieler R, Ranner G. Cervical cancer: serial MR imaging before and after primary radiation therapy: a 2-year follow-up study. Radiology 1992;184:89-93.   DOI
10 Kodaira T, Fuwa N, Kamata M, et al. Clinical assessment by MRI for patients with stage II cervical carcinoma treated by radiation alone in multicenter analysis: are all patients with stage II disease suitable candidates for chemoradiotherapy? Int J Radiat Oncol Biol Phys 2002;52:627-36.   DOI   ScienceOn
11 Kim H, Kim W, Lee M, Song E, Loh JJ. Tumor volume and uterine body invasion assessed by MRI for prediction of outcome in cervical carcinoma treated with concurrent chemotherapy and radiotherapy. Jpn J Clin Oncol 2007;37: 858-66.   DOI   ScienceOn
12 Eifel PJ, Morris M, Wharton JT, Oswald MJ. The influence of tumor size andmorphology on the outcome of patients with FIGO stage IB squamous cell carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 1994;29:9-16.   DOI   ScienceOn
13 Kovalic JJ, Perez CA, Grigsby PW, Lockett MA. The effect of volume of disease in patients with carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 1991;21:905-10.   DOI   ScienceOn
14 Miller TR, Grigsby PW. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int J Radiat Oncol Biol Phys 2002;53:353-9.   DOI   ScienceOn
15 Narayan K, Fisher R, Bernshaw D. Significance of tumor volume and corpus uteri invasion in cervical cancer patients treated by radiotherapy. Int J Gynecol Cancer 2006;16:623-30.   DOI   ScienceOn
16 Mayr NA, Taoka T, Yuh WT, et al. Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 2002;52:14-22.   DOI   ScienceOn
17 Mayr NA, Yuh WT, Taoka T, et al. Serial therapy-induced changes in tumor shape in cervical cancer and their impact on assessing tumor volume and treatment response. AJR Am J Roentgenol 2006;187:65-72.   DOI   ScienceOn
18 Soutter WP, Hanoch J, D'Arcy T, Dina R, McIndoe GA, DeSouza NM. Pretreatment tumour volume measurement on highresolution magnetic resonance imaging as a predictor of survival in cervical cancer. BJOG 2004;111:741-7.   DOI   ScienceOn
19 Chen AC, Sung WH, Wang PH, Sheu MH, Doong JL, Yuan CC. Correlation of three-dimensional tumor volumetry with cervical cancer prognostic parameters. Eur J Gynaecol Oncol 2002;23:401-4.
20 Wagenaar HC, Trimbos JB, Postema S, et al. Tumor diameter and volume assessed by magnetic resonance imaging in the prediction of outcome for invasive cervical cancer. Gynecol Oncol 2001;82:474-82.   DOI   ScienceOn
21 Burghardt E, Hofmann HM, Ebner F, Haas J, Tamussino K, Justich E. Magnetic resonance imaging in cervical cancer: a basis for objective classifi cation. Gynecol Oncol 1989;33:61-7.   DOI   ScienceOn
22 Subak LL, Hricak H, Powell CB, Azizi L, Stern JL. Cervical carcinoma: computed tomography and magnetic resonance imaging for preoperative staging. Obstet Gynecol 1995;86:43-50.   DOI   ScienceOn
23 Mazumdar M, Smith A, Schwartz LH. A statistical simulation study finds discordance between WHO criteria and RECIST guideline. J Clin Epidemiol 2004;57:358-65.   DOI   ScienceOn
24 Martin AJ, Poon CS, Thomas GM, Kapusta LR, Shaw PA, Henkelman RM. MR evaluation of cervical cancer in hysterectomy specimens: correlation of quantitative T2 measurement and histology. J Magn Reson Imaging 1994;4:779-86.   DOI   ScienceOn
25 Narayan K, McKenzie A, Fisher R, Susil B, Jobling T, Bernshaw D. Estimation of tumor volume in cervical cancer by magnetic resonance imaging. Am J Clin Oncol 2003;26:e163-8.   DOI   ScienceOn
26 Hofmann HM, Ebner F, Haas J, et al. Magnetic resonance imaging in clinical cervical cancer: pretherapeutic tumour volumetry. Baillieres Clin Obstet Gynaecol 1988;2:789-802.   DOI   ScienceOn
27 Prasad SR, Jhaveri KS, Saini S, Hahn PF, Halpern EF, Sumner JE. CT tumor measurement for therapeutic response assessment: comparison of unidimensional, bidimensional, and volumetric techniques initial observations. Radiology 2002;225:416-9.   DOI   ScienceOn
28 Sohaib SA, Turner B, Hanson JA, Farquharson M, Oliver RT, Reznek RH. CT assessment of tumour response to treatment: comparison of linear, cross-sectional and volumetric measures of tumour size. Br J Radiol 2000;73:1178-84.   DOI
29 Morris M, Eifel PJ, Lu J, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med 1999;340:1137-43.   DOI   ScienceOn
30 Rose PG, Bundy BN, Watkins EB, et al. Concurrent cisplatinbased radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med 1999;340:1144-53.   DOI   ScienceOn
31 Heyman J, Kottmeier HL, Segerdahl CO. An investigation of the reliability of stage-grouping in cancer of the uterine cervix. Acta Obstet Gynecol Scand 1953;32:65-79.   DOI   ScienceOn
32 Whitney CW, Sause W, Bundy BN, et al. Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: a Gynecologic Oncology Group and Southwest Oncology Group study. J Clin Oncol 1999;17:1339-48.
33 Averette HE, Ford JH Jr, Dudan RC, Girtanner RE, Hoskins WJ, Lutz MH. Staging of cervical cancer. Clin Obstet Gynecol 1975;18:215-32.   DOI   ScienceOn
34 Brunschwig A. The surgical treatment of cancer of the cervix: stage I and II. Am J Roentgenol Radium Ther Nucl Med 1968;102:147-51.   DOI
35 Hricak H, Lacey CG, Sandles LG, Chang YC, Winkler ML, Stern JL. Invasive cervical carcinoma: comparison of MR imaging and surgical findings. Radiology 1988;166:623-31.
36 Hricak H, Phillips TL. Editorial on "the infl uence of tumor size and morphology on the outcome of patients with FIGO stage IB squamous cell carcinoma of the uterine cervix". Int J Radiat Oncol Biol Phys 1994;29:201-3.   DOI   ScienceOn
37 Greco A, Mason P, Leung AW, Dische S, McIndoe GA, Anderson MC. Staging of carcinoma of the uterine cervix: MRI-surgical correlation. Clin Radiol 1989;40:401-5.   DOI   ScienceOn
38 Mayr NA, Tali ET, Yuh WT, et al. Cervical cancer: application of MR imaging in radiation therapy. Radiology 1993;189:601-8.   DOI
39 Hricak H, Powell CB, Yu KK, et al. Invasive cervical carcinoma: role of MR imaging in pretreatment work-up: cost minimization and diagnostic efficacy analysis. Radiology 1996; 198:403-9.