• Title/Summary/Keyword: Ellipsoid

Search Result 378, Processing Time 0.061 seconds

An Application of the Force Rllipsoid to the Ooptimal Load Distribution of Cooperating Robots (힘 타원을 이용한 다중 협력 작업 로봇의 최적 부하 분배에 관한 연구)

  • 서창원;최명환;조혜경;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.162-167
    • /
    • 1991
  • The manipulability ellipsoid and the force ellipsoid for a single robot are extended to the case of a multi-robot system. The force ellipsoid is applied to solve the optimal load distribution for the multi-robot system. Two cases are considered in solving the optimal load distribution. In one case, there are no constraints on the joint torques, and the analytic solution ;a given. In the other case, the torque constraints are given in terms of the maximum power consumption, and the algorithm for the solution is proposed.

  • PDF

THE MOTION OF POINT VORTEX DIPOLE ON THE ELLIPSOID OF REVOLUTION

  • Kim, Sun-Chul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.73-79
    • /
    • 2010
  • A pair of point vortices of the same strength but opposite sign is called a vortex dipole. We consider the limiting case where two vortices approach infinitely close while the ratio of the strength to the distance kept constant. The motion of such point vortex dipole on the ellipsoid of revolution is investigated geometrically to conclude that the trajectory draws a geodesic up to the leading order of perturbation, whose direction is determined by the initial orientation of the dipole. Related issues are also remarked.

Human Gender and Motion Analysis with Ellipsoid and Logistic Regression Method

  • Ansari, Md Israfil;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.3 no.2
    • /
    • pp.9-12
    • /
    • 2016
  • This paper is concerned with the effective and efficient identification of the gender and motion of humans. Tracking this nonverbal behavior is useful for providing clues about the interaction of different types of people and their exact motion. This system can also be useful for security in different places or for monitoring patients in hospital and many more applications. Here we describe a novel method of determining identity using machine learning with Microsoft Kinect. This method minimizes the fitting or overlapping error between an ellipsoid based skeleton.

Ellipsoidal Agreement Analysis between Bessel 1841 and GRS80 in Korea by Astrogeodtic Geoid (천문측지지오이드에 의한 Bessel1841과 GRS80의 우리나라에의 타원체 적합성 분석)

  • Lee, Suk-Bae;Sim, Jung-Min
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.17-20
    • /
    • 2007
  • Many countries have changed her geodetic reference system from local system to global system because of the global network's necessity And, also Korean geodetic reference system changed from Tokyo datum to Global geodetic reference system since 2003 as the revision of Survey Law and Korean reference ellipsoid changed from Bessel 1841 ellipsoid to GRS80. Astronomic surveying has been regarded as an important method for absolute positioning of geodetic datum in each countries under the local geodetic reference system. This paper aims to analyses distribution of geoidal heights and ellipsoidal agreement between Bessel 1841 and GRS80 ellipsoid in Korea through comparing both astrogeotic geoidal heights referred to GRS80 and Bessel 1841 ellipsoid by astronomic surveying data which have been surveyed after 1970 in Korea.

  • PDF

Optimal configuration control for redundant robot manipulators-manipulability-based approach (여유 자유도 로봇의 최적 자세 제어)

  • Lee, Ji-Hong;Lee, Mi-Gyung;Lee, Young-Il;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.739-742
    • /
    • 1996
  • Several figures representing velocity transmission from joint space to task space are analyzed and compared with each other. The figures include velocity ellipsoid derived from Jacobian matrix, scaled velocity ellipsoid derived from normalized joint velocities, polytope derived by numerical scaling, and polytopes derived by linear combinations of Jacobian column vectors. The results show that the optimal directions given by the measures are not the same and the conventional velocity ellipsoid is not good choice as optimization measure as far as the moving direction is concerned. Simulation examples for 3 d.o.f. redundant robot manipulators in 2-dimensional task space are given for comparison study.

  • PDF

EXTREMUM PROPERTIES OF DUAL Lp-CENTROID BODY AND Lp-JOHN ELLIPSOID

  • Ma, Tong-Yi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.465-479
    • /
    • 2012
  • For $0<p{\leq}{\infty}$ and a convex body $K$ in $\mathbb{R}^n$, Lutwak, Yang and Zhang defined the concept of dual $L_p$-centroid body ${\Gamma}_{-p}K$ and $L_p$-John ellipsoid $E_pK$. In this paper, we prove the following two results: (i) For any origin-symmetric convex body $K$, there exist an ellipsoid $E$ and a parallelotope $P$ such that for $1{\leq}p{\leq}2$ and $0<q{\leq}{\infty}$, $E_qE{\supseteq}{\Gamma}_{-p}K{\supseteq}(nc_{n-2,p})^{-\frac{1}{p}}E_qP$ and $V(E)=V(K)=V(P)$; For $2{\leq}p{\leq}{\infty}$ and $0<q{\leq}{\infty}$, $2^{-1}{\omega_n}^{\frac{1}{n}}E_qE{\subseteq}{\Gamma}_{-p}K{\subseteq}{2\omega_n}^{-\frac{1}{n}}(nc_{n-2,p})^{-\frac{1}{p}}E_qP$ and $V(E)=V(K)=V(P)$. (ii) For any convex body $K$ whose John point is at the origin, there exists a simplex $T$ such that for $1{\leq}p{\leq}{\infty}$ and $0<q{\leq}{\infty}$, ${\alpha}n(nc_{n-2,p})^{-\frac{1}{p}}E_qT{\supseteq}{\Gamma}_{-p}K{\supseteq}(nc_{n-2,p})^{-\frac{1}{p}}E_qT$ and $V(K)=V(T)$.

The Ellipsoid Method for ILP Problem and its Application (ILP를 위한 타원법과 그 응용)

  • 김준홍
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.11 no.17
    • /
    • pp.15-23
    • /
    • 1988
  • The subject in this paper is to apply the ellipsoid method proposed by khachiyan〔1〕 to ILP systems. For solving ILP problems we will present a algorithm using the modified formular of Pallaschke〔2〕. Additionally, computational results indicate that out algorithm is subject to the numerical stability.

  • PDF

Dynamic Manipulability Analysis of Underwater Robotic Arms with Joint Velocities (관절속도를 가지는 수중로봇팔의 동적 조작도 해석)

  • JEON BONG-HWAN;LEE JIHONG;LEE PAN-MOOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.204-209
    • /
    • 2004
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The Manipulability is a functionality of manipulator system in a given configuration and under the limits of joint ability with respect to the tasks required to bt performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method are presented. The dynamic equation of motion of underwater manipulator is derived from the Lagrange - Euler equation considering with the hydraulic forces caused by added mass, buoyancy and hydraulic drag. The hydraulic drag term in the equation: is established as analytical form using Denavit - Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based on Manipulability Ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torque in joint space while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

  • PDF

Optimal load distribution for two cooperating robot arms using force ellipsoid

  • Choi, Myoung-Hwan;Cho, Hye-Kyung;Lee, Bum-Hee;Ko, Myoung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1790-1795
    • /
    • 1991
  • The optimal load distribution for two cooperating robots is studied in this paper, and a new solution approach utilizing force ellipsoid is proposed. The load distribution problem is formulated as a nonlinear optimization problem with a quadratic cost function. The limit on instantaneous power is considered in the problem formulation as the joint torque constraints. The optimal solution minimizing energy consumption is obtained using the concept of force ellipsoid and the nonlinear optimization theory. The force ellipsoid provides a useful geometrical insight into the load distribution problem. Despite the presence of the joint torque constraints, the optimal solution is obtained almost as a closed form, in which the joint torques are given in terms of a single scalar parameter that can be obtained numerically by solving a scalar equation.

  • PDF

Calculation of Geoidal Height refered to Bessel Ellipsoid From EGM96 Model (EGM96 모델을 이용한 Bessel 지오이드고의 계산)

  • 최경재;최윤수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In order to calculate geoidal height refered to Bessel ellipsoid, methods to translate geoidal heights from a certain coordinate system to an arbitrary system with the corresponding ellipsoid are studied. and geoidal heights refered to Bessel ellipsoid were computed from EGM96 Model refered to GRS80 using iteration method pro-posed in this paper. Transformation parameters between WGS84 and Bessel were calculated using geoidal heights computed from iteration method. The result of coordinate transformation(standard deviation) were 0.009 second in latitude and 0.006 in longitude and 0.393m in orthometric height.

  • PDF