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THE MOTION OF POINT VORTEX DIPOLE ON
THE ELLIPSOID OF REVOLUTION

SuN-CHUL Kim

ABSTRACT. A pair of point vortices of the same strength but opposite
sign is called a vortex dipole. We consider the limiting case where two
vortices approach infinitely close while the ratio of the strength to the
distance kept constant. The motion of such point vortex dipole on the
ellipsoid of revolution is investigated geometrically to conclude that the
trajectory draws a geodesic up to the leading order of perturbation, whose
direction is determined by the initial orientation of the dipole. Related
issues are also remarked.

1. Introduction

Dynamics of vortex is a crucial part of classical and modern fluid mechan-
ics. The most basic vortex motion is probably that of point vortices in two-
dimension where the vorticity is ideally concentrated at a point. The interacting
mechanisms of such point vortices are fundamentally important and helpful to
understand the relevant physics of fluids. In spite of extensive study of dynam-
ics of point vortices for centuries, there still remain many open issues [10].

In fact, we point out that even the two-vortex system, i.e., a pair of vortices
display certain interesting motions. On the constant curvature surfaces (the
plane, the sphere and the hyperbolic plane), Kimura [9] studied the motion
of a pair of vortices with opposite strengths and argued that trajectories are
always geodesic curves. Specifically, by stereographically projecting the sphere
(and the hyperbolic plane) onto the two-dimensional plane, the dynamics of
vortices is expounded indirectly. This method has an inevitable limitation since
stereographic projection is only for the sphere (and the hyperbolic plane).

We here present an extension of this result by studying the point dipole
motion on an ellipsoid of revolution (or symmetric ellipsoid) which is obtained
by rotating an ellipse about its (shorter) axis. Recently the basic dynamical
equations of point vortex on such ellipsoid of revolution are pursued in [3]
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by a perturbation technique which will be used in this paper. In addition,
instead of the stereographic projection, we adopt a direct geometrical approach
and incorporate the parallel translation property of geodesic. More precisely,
regarding the ellipsoid as imbedded in R?, we derive and analyze the dynamical
equations of vortex directly and then check the parallel translation of the vortex
dipole. The difficulty in generalizing the geodesic property of dipole paths for
more general curved surfaces or even for general two-dimensional manifolds is
then commented. A related conjecture in [8] turns out to be incorrect.

The current study has some meaning in the geophysical phenomena of global
atmosphere and ocean circulation process. In fact, the physics of vortex dipole
has been a central theme in various geophysical topics such as atmospheric
jets [11], B-effect [4], vortex modon [7]. Also, in the viewpoint of dynamical
systems, the vortex dipole is an important example of the ergodicity of vortex
motion on certain smooth embedded ergodic surfaces [2] although most of point
vortex systems are not ergodic [12].

2. Vortex dipole on an ellipsoid of revolution

First we specify the ellipsoid of revolution E? defined by
2?2 g2 22
Rtretreirg ="
where R > 0 and ¢ is a small number. The shape of E? is varying with e.
More precisely, according to € > 0 or € < 0, the ellipsoid is prolate or oblate,
respectively. And the corresponding eccentricity e of the generating ellipse is
given by e = /¢/(1+¢) and e = \/—e. This scaling produces the relation
€ = O(e?) between two parameters ¢, e and therefore, the truncated first order
system is expected to be a good approximation even for rather large values of
the eccentricity.

On the ellipsoid E?, let us consider N point vortices located at

E?:

X1 = (1‘1,],/1,2’1),..., XN = (ZIJN,ZJN,ZN)

with vortex strengths I'1, ..., 'y, respectively. The corresponding Hamiltonian
of the motion of the N-vortices up to the leading order in € is expressed by

1 €
I{(Xl7 . 7XN) = 5 Z FlFJ lOg(Xi - Xj) + 5 Z FZF](ZZ2 + ZJQ),
4,JF#k i,j#k
where z;, z; are the z-components of x;, x;, respectively. (See [3] for derivation.)
From this we derive the dynamical equations of point vortex on EZ,

) X X X;
(1) X; = ZFJ Al l2 ! + ZGPin X Z;Z,
e v J#i
where [;; = |x;—X;| is the three dimensional Euclidean distance and z = (0,0, 1)
is the unit z-direction vector.
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FIGURE 1. The motion of point vortex dipole transports vy
parallel in time

We then construct a point vortex dipole on E? as follows. Choose a point x4
on E? and a unit tangent vector vq # 0 in R3 at x4. We generate a point vortex
dipole at x4 with a direction vy as follows. (Here direction roughly means how
two point vortices get close whose precise definition is given below.) First, we
project L = {rvq : —1 < 7 < 1} onto E? to obtain a curve v = v(7) with
7(0) = x4 on E? and put the projected images of vg4, —v4 be x1,%3 on EZ.
Then two point vortices x1,x2 approach to x4 along v forming a point vortex
dipole at x4. Here, the convergence is performed along a fixed direction vy
which is the tangent of v at x4. From this we define the direction of a point
vortex dipole by the unit tangent vector v4, which is related to the orientation
of point vortex dipole (Figure 1). In this paper, we abuse the term vortex dipole
for point vortex dipole for convenience because we deal the point dipole case
only.
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Following this procedure, we choose two point vortices at x;, x2 with nonzero
strengths T', —T', respectively. Then (1) reduces to

X1 X Xo . X1 X X3
— el'xq X 297, Xg = Fﬁ
l12 112

(2) )'{1 =T + EFXQ X Z142.

As in [9], we make a dipole by keeping the aspect ratio 7 of the strength to
the distance

r
dpg2(X1,X2;7)

while x;,x2 both approaching to x4 in a manner described above. Here
dpg2(x1,X2;7) represents the intrinsic distance between x1, x5 along the curve
v on E?. In other words, it is the arclength of v between x1,xs. (Note that
X1, X2 moves to x4 along v.) Let us check if x;,xs transport v, in parallel
by inspecting the derivative of X with respect to dgz(x1,X2;7) at x4. More
precisely we rewrite the expression

=7>0 fixed

).(1 - 5(2 o el’
dp2(x1,%2;7)  dp2(x1,%2;7)
by adding and subtracting x; X z1z to the numerator into the form,
el’

dp2(X1,X2;7)

[X1 X 222 — X3 X 217]

[((x2 —x1) X 212 + X1 X (22 — 21)2] .

As we form the vortex dipole by letting dg=(x1, X2;y) — 0, since m =
E 1 X235

7 > 0 fixed, we necessarily have
X1 — X

lim — =0
dg2 (x1,%237)—0 dp2 (Xl, X2; ’Y)

and established the parallel translation at the initial movement of vortex dipole.

Now, we consider the trajectory of the dipole a : x4(t), 0 < t <ty on E?
with x4(0) = x4 for some ¢y > 0 whose (local) existence is assumed. At each
time ¢, we investigate the direction vector v4(t) which is, by definition, trans-
ported by the dipole motion and defined along the trajectory with v4(0) = v4.
Then the argument at ¢ = 0 above can be analogously repeated at x4(¢) with
the direction v4(t) and newly generated x1, X2 at x4(¢) (denoted by x1;, Xat)
along v; again transport v4(¢) parallel (Look at Figure 1). In summary,

Theorem 2.1. The direction vector v4(t) of point vorter dipole moves parallel
along the trajectory at any time. Then the point vortex dipole x4(t) moves
perpendicular to vq(t) always.

Accordingly, from the first part of theorem above, the normal vector v4(¢)
to « is parallel for all time. In other words, the tangent vectors to « are always
parallel from the second part of the theorem, which is a geometric definition
of a geodesic curve (See [5], p. 291). We remark that the sphere case (¢ = 0)
is included during this argument to rediscover the result in [9]. The situation
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is dynamically equivalent to the roll of a small buggy with two same wheels
joined by an infinitesimal axle (See [1] pp. 34-35).

Since our conclusion is only for the first order approximation of vortex dy-
namics, the next step of research will be inspecting the full exact trajectory of
dipole by deriving the exact dynamical equations of point vortices on the ellip-
soid of revolution. However, as commented in [3], the perturbation approach
shows that the next order computations are too complicated and does not
permit exact analytic solutions. Therefore, we might think of approximating
solutions by certain numerical methods.

3. Remarks on the general curved surface case

Presumably, in regard to the present study, the final goal will be studying the
trajectory of dipole on general curved surfaces or two-dimensional manifolds.
The fundamental difficulty here is to set up the equations of motion of point
vortices on general surfaces. This was initiated by Hally [6] who obtained a
conformal coordinate formulation of vortex dynamics in the complex variables
for the general simply connected surfaces. In [3], this approach is adopted and
a perturbation series is calculated for the conformal factor function in the case
of ellipsoid of revolution. As observed there, it is very hard to compute the
conformal function in general except some highly symmetric surfaces such as a
plane, a sphere, a circular cylinder, etc.

On the other hand, as we formulated in this paper, an alternative approach is
possible. It is to regard the surface as imbedded in R3 and write the point vortex
equations in three dimensional vector format. In particular, this approach
produces the following formula for the velocity of i-th point vortex as in [8]

(3) ).(i:Zanj X(Xiij‘)’

oy [xi — x5

where n; is the unit normal to the given surface at x; for 4,5 = 1,...,N.
(See Chapter 1 of [10] for details.) This representation successfully unifies the
plane and the sphere vortex motions by taking n; = (0,0,1) and n; = x;/r
respectively, where r is the radius of the sphere. It is also implicitly conjectured
on p. 147 in [8] if this formula is true for more general curved surfaces by taking
the corresponding unit normal of the given surface n; at x;. Of course, as this
formula does not impose any condition for point vortices of staying on the
specific surface, we should supplement an additional constraint that the vortex
motion is performed on the given surface for all time.

However, by comparing with the formula (2), we realize that this is not the
case for the ellipsoid of revolution. Let us illustrate the incorrectness of (3) by
direct computation. For the dipole case, if (3) is correct, it should be

n2><(X1_X2) % _PH1X(X1—X2)

(4) 5(1 =T D) ) 2 = 2
l12 l12
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In the ellipsoid of revolution case, we put R = 1 for simplicity and first expand

2

(22 2201+ 7Dl = 14+ B((1+ 972 = (1+ ) = 1 -2 +0()

since (2,2, z2) is on E2. Thus the normal is given by

(22,92, 22(1+€)7 1)
|[(z2, Y2, 22(1 + €)~1)||

2
= (X26222+"')(1+6222+"'>

np, =

2
z
= Xg+e€ <zzz + ;xz> + 0(62).

Substituting this into (4) produces

p 22X (;l x2) _p X2l§ oy (zﬂ x (;‘1 x2) +z§X2l§ Xl) +O().

12 12 12 12
Since the two point vortices are staying on the ellipsoid during the whole mo-
tion, the instantaneous velocity should be confined in the tangent plane. In
other words, we need to compute the projection of the velocity x; onto the
tangent plane at x;. By the vector product with n;, we explicitly obtain the
components of projected images. Expanding the results from (2) and (4) in the
power of €, we derive the order of € terms

elzo(x1 X 2) X X1
and
222 X (X1 — X Xg X X1) X X
o (b)) X
I Iy

respectively, which obviously shows disagreement. In conclusion, although we
are not sure if the formula (3) is true only for the planar and the spherical
cases, we suppose that the formula is valid for very special surfaces of high
symmetry.
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