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EXTREMUM PROPERTIES OF DUAL Lp-CENTROID BODY

AND Lp-JOHN ELLIPSOID

Tong-Yi Ma

Abstract. For 0 < p ≤ ∞ and a convex body K in Rn, Lutwak, Yang
and Zhang defined the concept of dual Lp-centroid body Γ−pK and Lp-
John ellipsoid EpK. In this paper, we prove the following two results:

(i) For any origin-symmetric convex body K, there exist an ellipsoid
E and a parallelotope P such that for 1 ≤ p ≤ 2 and 0 < q ≤ ∞,

EqE ⊇ Γ−pK ⊇ (ncn−2,p)
− 1

p EqP and V (E) = V (K) = V (P );

For 2 ≤ p ≤ ∞ and 0 < q ≤ ∞,

2−1ω
1
n
n EqE⊆Γ−pK⊆2ω

− 1
n

n (ncn−2,p)
− 1

p EqP and V (E)=V (K)=V (P ).

(ii) For any convex body K whose John point is at the origin, there
exists a simplex T such that for 1 ≤ p ≤ ∞ and 0 < q ≤ ∞,

αn(ncn−2,p)
− 1

p EqT ⊇ Γ−pK ⊇ (ncn−2,p)
− 1

p EqT and V (K) = V (T ).

1. Introduction and main results

For each convex subset in Rn, it is well-known that there is a unique ellipsoid
with the following property: The moment of inertia of the ellipsoid and the
moment of inertia of the convex set are the same about every 1-dimensional
subspace of Rn. This ellipsoid is called the Lengendre ellipsoid of the convex
set. The Lengendre ellipsoid and its polar (the Binet ellipsoid) are well-known
concepts from classical mechanics; see [4, 5, 13] for historical references.

It has slowly come to be recognized that along side the Brunn-Minkowski
theory there is a dual theory. The Lengendre ellipsoid (and Binet ellipsoid) is
an object of this dual Brunn-Minkowski theory. A nature question is whether
there is a dual analog of the classical Legendre ellipsoid in the Brunn-Minkowski
theory. Applying the Lp-curvature theory ([6, 7]), Lutwak, Yang and Zhang
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demonstrated the existence of precisely this dual object. Further, some beauti-
ful and deep properties for this dual analog of the Legendre ellipsoid have been
discovered (see [8]).

An often used fact in convex geometry is that associated with each convex
body K is a unique ellipsoid JK of maximal volume that is contained in K.
The ellipsoid is called the John ellipsoid of K and the center of this ellipsoid is
called John point of K.

For the ease of use we first introduce some notations and concepts. Let
Kn denote the set of convex bodies (compact, convex subsets with non-empty
interiors) in Euclidean space Rn, Kn

o and Kn
e denote the set of convex bodies

containing origin in their interiors and the set of origin-symmetric convex bodies
in Rn, respectively. Let Sn−1 denote the unit sphere in Rn, V (K) denote the
n-dimensional volume of body K. If K is the standard unit ball Bn in Rn,
then it is denoted as ωn = V (Bn).

Let K ∈ Kn, the support function hK of K is defined by (see [1, 10])

h(K,u) = hK(u) = max{⟨u, x⟩ : x ∈ K}, u ∈ Sn−1,

where ⟨u, x⟩ denotes the standard inner product of u and x in Rn.
For a compact subset L of Rn, which is star-shaped with respect to the origin,

we shall use ρ(L, ·) or ρL(·) to denote its radial function; i.e., for u ∈ Sn−1 (see
[1, 10]),

ρ(L, u) = ρK(u) = max{λ > 0 : λu ∈ L}.
In [8], Lutwak, Yang and Zhang proposed the concept of the new ellipsoid

as follows:

Definition 1.1. For K ∈ Kn, the new ellipsoid Γ−2K was defined by

(1.1) ρ−2
Γ−2K

(u) =
1

V (K)

∫
Sn−1

|⟨u, v⟩|2dS2(K, v)

for all u ∈ Sn−1, where S2(K, ·) denotes the L2-surface measure.

In [8], it was shown that S2(K, ·) is absolutely continuous with respect to
the classical surface area measure SK := S(K, ·) and has the Radon-Nikodym
derivative

dS2(K, ·)
dSK

=
1

hK
.

If P is a convex polytope in Rn whose faces have outer unit normals u1, . . .,
uN , and ai denotes the area ((n − 1)-dimensional volumes) of the face with
outer normal ui and hi denotes the distance from the origin to this face,
then the measure S2(P, ·) is concentrated at the points u1, . . . , uN ∈ Sn−1 and
S2(P, ui) = ai/hi. Thus, for the convex polytope P , we have for u ∈ Sn−1(see
[8]),

(1.2) ρ−2
Γ−2P

(u) =
1

V (P )

N∑
i=1

⟨u, ui⟩2
ai
hi

.
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In 2005, Lutwak, Yang and Zhang further put forward the following concept
of Lp-John ellipsoid of convex body K which is a generalized of the John
ellipsoid JK and new ellipsoid Γ−2K (see [9]).

Definition 1.2. Suppose that K ∈ Kn
o and 0 < p ≤ ∞, for each origin-

symmetric ellipsoid E, there exists a unique ellipsoid EpK that solves the
constrained maximization problem

V (EpK) = maxV (E) subject to V p(K,E) ≤ 1.

Then Ep is called the Lp-John ellipsoid of K, where

V p(K,L) = (Vp(K,L)/V (K))1/p,

Vp(K,L) is the Lp-mixed volume of K,L ∈ Kn
o .

When p = 1, the E1K is just the Petty ellipsoid; When p = 2, the E2K is
just the new ellipsoid Γ−2K; When p = ∞, the E∞K is just the well-known
classical John ellipsoid JK.

At the same time, Lutwak, Yang and Zhang put forward the following con-
cept of the new geometry body Γ−pK as a generalization of the new ellipsoid
Γ−2K (see [9]):

Definition 1.3. If K ∈ Kn
o and p > 0, then geometric body Γ−pK is an

origin-symmetric body whose radial function is defined by

(1.3) ρ−p
Γ−pK

(u) =
1

V (K)

∫
Sn−1

|⟨u, v⟩|pdSp(K, v)

for all u ∈ Sn−1. Note for p ≥ 1, the geometric body Γ−pK is an origin-
symmetric convex body. Sp(K, ·) is a positive Borel measure on Sn−1, called
the Lp-surface area measure of K. It turns out that the measure Sp(K, ·) on
Sn−1 is absolutely continuous with respect to SK , and has the Radon-Nikodym
derivative

dSp(K, ·)
dS(K, ·)

= h1−p(K, ·).

And Lp-centroid bodies ΓpK corresponding to the new geometry Γ−pK might
be called the dual Lp-centroid bodies.

Let K be a convex body containing the origin, in [9] the authors have proved
that EpK and Γ−pK have the affine invariant, i.e.,

Theorem A. If K ∈ Kn
o and 0 < p ≤ ∞, then for ϕ ∈ GL(n),

(1.4) EpϕK = ϕEpK,

(1.5) Γ−pϕK = ϕΓ−pK.

Where GL(n) denotes non-singular affine (or linear) transformation group.
Apparently, EpBn = Bn. And if K is an ellipsoid that is centered at the origin,
then

(1.6) EpE = E.
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For Lp-John ellipsoid EpK, we have that:

Theorem B (see [9]). If K ∈ Kn
o and 1 ≤ p ≤ ∞, then

(1.7) V (K) ≥ V (EpK),

with equality for p > 1 if and only if K is an ellipsoid containing the origin,
for p = 1 if and only if K is an ellipsoid.

Theorem C (see [9]). If K ∈ Kn
e and 0 < p ≤ ∞, then

(1.8) V (EpK) ≥ 2−nωnV (K),

with equality if and only if K is a parallelotope.

We note that an equation as follows: If K ∈ Kn
o , p ≥ 1, then

(1.9) Γ−pK =

(
V (K)

ncn−2,pωn

) 1
p

Π∗
pK,

where Π∗
pK denotes polar body of Lp-projection body ΠpK of K, and

(1.10) cn,p =
ωn+p

ω2ωnωp−1
.

Using Eq.(1.9) and Theorem 2 in [10], then the upper bound on V (Γ−p)K is
established the following results:

Theorem D. Suppose K ∈ Kn
o and 1 ≤ p ≤ ∞, then

(1.11) V (Γ−pK) ≤ (ncn−2,p)
−n

p V (K),

with equality for p > 1 if and only if K is an ellipsoid centered at the origin,
for p = 1 if and only if K is an ellipsoid.

Remark 1.1. For p = 2 the inequality (1.11) is just the following well-known
inequality by Lutwak, Yang and Zhang (see [8]):

(1.12) V (Γ−2K) ≤ V (K),

with equality if and only if K is an ellipsoid centered at the origin.

For Lp-John ellipsoid EpK, Wang proved also the following results (see [16,
p. 64]):

Theorem E. Suppose K ⊂ Rn is a convex body positioned so that its John
point is at the origin, and 0 < p ≤ ∞, then

(1.13) V (EpK) ≥ n!ωn

n
n
2 (n+ 1)

n+1
2

V (K),

with quality if and only if K is a simplex.
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Let K be a convex body in Rn. Then the difference body DK of K is defined
by DK = K + (−K). The Rogers-Shephard inequality of DK is

V (DK) ≤
(2n

n

)
V (K),

with equality if and only if K is a simplex.
In [2] (also see Schneider’s review article [14]), Jonasson establish an en-

hanced version of the Rogers-Shephard inequality of on the plane R2 as follows:
Let K be a convex body in R2. Then there exists a triangle T such that

DK ⊆ DT, V (K) = V (T ).

From V (DK) ≤ V (DT ) = 6V (T ) = 6V (K), we can obtain the Rogers-
Shephard inequality.

The work of Jonasson and Yuan (see [17]) inspired us to further study the
extremum properties of dual Lp-centroid body Γ−pK and the Lp-John ellipsoid
EpK of convex body K and have established the following two main theorems:

Theorem 1.1. For any origin-symmetric convex body K, there exist an ellip-
soid E and a parallelotope P such that for 1 ≤ p ≤ 2 and 0 < q ≤ ∞,

EqE ⊇ Γ−pK ⊇ (ncn−2,p)
− 1

pEqP and V (E) = V (K) = V (P );

For 2 ≤ p ≤ ∞ and 0 < q ≤ ∞,

2−1ω
1
n
n EqE ⊆ Γ−pK ⊆ 2ω

− 1
n

n (ncn−2,p)
− 1

pEqP and V (E) = V (K) = V (P ).

Theorem 1.2. For any convex body K whose John point is at the origin, there
exists a simplex T such that for 1 ≤ p ≤ ∞ and 0 < q ≤ ∞,

αn(ncn−2,p)
− 1

pEqT ⊇ Γ−pK ⊇ (ncn−2,p)
− 1

pEqT and V (K) = V (T ).

Where

αn =

(
n

n
2 (n+ 1)

n+1
2

n!ωn

) 1
n

.

2. Preliminaries

For K,L ∈ Kn
o and real p ≥ 1, the Lp-mixed volume Vp(K,L) of the K and

L is given by (see [6])

(2.1) Vp(K,L) =
1

n

∫
Sn−1

hp
L(v)dSp(K, v).

The Lp-Minkowski inequality states that (see [7]), if K,L ∈ Kn
o and p ≥ 1,

then

(2.2) Vp(K,L) ≥ V (K)
n−p
n V (L)

p
n ,

with equality for p = 1 if and only if K and L are homothetic, for p > 1 if and
only if K and L are dilates.
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For K,L ∈ Sn
o and real p ≥ 1, the Lp-dual mixed volume V−p(K,L) of the

K and L is given by (see [7])

(2.3) V−p(K,L) =
1

n

∫
Sn−1

ρn+p
K (v)ρ−p

L (v)dS(v),

where S is the spherical Lebesgue measure on Sn−1. From Eq.(2.3), it follows
immediately that for each K ∈ Sn

o and p ≥ 1,

(2.4) V−p(K,K) = V (K).

The Lp-Minkowski inequality for the dual mixed volume V−p(K,L) states
that (see [7]), if K,L ∈ Sn

o and p ≥ 1, then

(2.5) V−p(K,L) ≥ V (K)
n+p
n V (L)−

p
n ,

with equality if and only if K and L are dilates.

Definition 2.1 (see [11]). For each compact star-shaped K ⊂ Rn about the
origin and the real number p ≥ 1, the Lp-centroid body ΓpK of K is the
origin-symmetric body whose support function is defined by

(2.6) hp
ΓpK

(u) =
1

cn,pV (K)

∫
K

|u · x|pdx

for all u ∈ Sn−1. From Eq.(2.6), we can easily get that for all u ∈ Sn−1,

(2.7) hp
ΓpK

(u) =
1

(n+ p)cn,pV (K)

∫
Sn−1

|u · v|pρn+p
K (v)dS(v).

If E is an ellipsoid that is centered at the origin, then ([11])

(2.8) ΓpE = E.

Lemma 2.1 (John [3]). Each convex body K contains a unique ellipsoid JK of
maximal volume. This ellipsoid is the unit ball Bn if and only if the following
conditions are satisfied: Bn ⊂ K and there are contact points {ui}m1 and positive
numbers {ci}m1 so that

(2.9) ||x||2 =
m∑
i=1

ciui ⊗ ui = In,

where ui ⊗ ui is the rank-one orthogonal projection onto the span of ui and In
is the identity on Rn.

The condition (2.9) shows that the ui behave like an orthonormal basis to
the extent that, for each x ∈ Rn,

(2.10) ||x||2 =
m∑
i=1

ci⟨x, ui⟩2.

A detailed discussion of these equivalent conditions, refer to K. Ball’s article
[1].
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The equality of the traces in (2.9) shows that

(2.11)
m∑
i=1

ci = n.

Lemma 2.2 (see [9]). If K ∈ Kn
o , then for 0 < p ≤ 2,

EpK ⊇ Γ−pK ⊇ n
1
2−

1
pEpK;

For 2 ≤ p ≤ ∞,

EpK ⊆ Γ−pK ⊆ n
1
2−

1
pEpK.

Lemma 2.3. Let C be a cube centered at the origin in Rn. Then for 0 < p ≤
∞,

(2.12) EpC = JC.

Proof. Without loss of generality, let C be cube [−1, 1]n in Rn. By simple
calculation shows that for cube C, its Lp-John ellipsoid is the unit ball Bn; see
[9]. That is EpC = Bn. □

For C the John ellipsoid JC is also Bn. The contact points are the standard
basis vectors (e1, . . . , en) of Rn and their negatives, and they satisfy

m∑
i=1

ei ⊗ ei = In.

That is, one can take all the weights ci equal to 1 in (2.12).

Lemma 2.4. Let T be a simplex containing the origin in Rn. Then for 0 <
p ≤ ∞,

(2.13) EpT = JT.

Proof. Since both EpT and JK are affine invariant, it suffices to prove that
EpT = JT holds for a regular simplex. It is easy to verify that the John
ellipsoid of a regular simplex is its inscribed ball.

Without loss of generality, we may assume that T is a regular simplex whose
inscribed ball is Bn. Let u1, . . . , un+1 denote the outer unit normals and S the
area of the face of T. By (2.10) and (2.11), we have for each x ∈ Rn,

||x||2 =

n+1∑
i=1

ci⟨x, ui⟩2,
n+1∑
i=1

ci = n.

Take ui for x, and notice that ⟨ui, uj⟩ = − 1
n for i ̸= j.

It follows that

1 =
n+1∑
j=1

cj⟨uj , ui⟩2 =
1

n2

( n+1∑
j=1

cj − ci

)
+ ci.

Hence
ci =

n

n+ 1
, i = 1, 2, . . . , n+ 1.
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In addition, Theorem A show that it is sufficient to prove the EpT
′ = Bn

when T ′ is a regular simplex whose inscribed ball is Bn. In fact, let T be a
simplex that the John point is at the origin (e.g., if ϕT is origin-symmetric),
and EpT = E with E is an ellipsoid that is centered at the origin, then there
exists an affine transformation ϕ ∈ GL(n), such that ϕT = T ′ is a regular
simplex whose inscribed ball is Bn and ϕE = Bn. From Theorem A we give

EpT
′ = EpϕT = ϕEpT = ϕE = Bn.

In summary, we have that EpT = JT . □

Lemma 2.5 (Fejes Tóth [12]). Let T be a simplex in Rn with inscribed ball
radius r. Then

(2.14) V (T ) ≥ n
n
2 (n+ 1)

n+1
2

n!
rn,

with equality if and only if T is a regular simplex.

3. Proofs of theorem

In order to prove theorems, we need the following several lemmas.

Lemma 3.1. If K ∈ Sn
o , L ∈ Kn

o , and p ≥ 1, then

(3.1) Vp(L,ΓpK) =
V (L)

ncn−2,pV (K)
V−p(K,Γ−pL).

Proof. Using (2.1) and (2.7), and combining with (1.3) and (2.3), we have

Vp(L,ΓpK) =
1

n

∫
Sn−1

hp
ΓpK

(u)dSp(L, u)

=
1

n(n+ p)cn,pV (K)

∫
Sn−1

∫
Sn−1

|u · v|pρn+p
K (v)dS(v)dSp(L, u)

=
V (L)

n(n+ p)cn,pV (K)

∫
Sn−1

ρn+p
K (v)ρ−p

Γ−pL
(v)dS(v)

=
V (L)

(n+ p)cn,pV (K)
V−p(K,Γ−pL).

But the equality (1.10) gives (n+ p)cn,p = ncn−2,p, so we get (3.1). □

We proved the following inequality associated with dual Lp-centroid bodies
Γ−pK and Lp-John ellipsoid EpK:

Lemma 3.2. Suppose K ∈ Kn
o and 1 ≤ p ≤ ∞, then

(3.2) V (Γ−pK) ≥ (ncn−2,p)
−n

p V (EpK),

with equality if and only if K is an ellipsoid centered at the origin or p = 2.



DUAL Lp-CENTROID BODY AND Lp-JOHN ELLIPSOID 473

Proof. From (2.8) we see that if E is an ellipsoid centered at the origin, then
ΓpE = E. Thus for Lp-John ellipsoid EpK, we have

(3.3) ΓpEpK = EpK.

Consider EpK instead of K in (3.1), and using (3.3), we have

Vp(L,EpK) = Vp(L,ΓpEpK) =
V (L)

ncn−2,pV (EpK)
V−p(EpK,Γ−pL).

Take L = K in the above equation, and combined with inequality (2.5), we
have

Vp(K,EpK) =
V (K)

ncn−2,pV (EpK)
V−p(EpK,Γ−pK)

≥ V (K)

ncn−2,pV (EpK)
V (EpK)

n+p
n V (Γ−pK)−

p
n

=
V (K)

ncn−2,p
V (EpK)

p
nV (Γ−pK)−

p
n ,

namely

(3.4) Vp(K,EpK) ≥ V (K)

ncn−2,p
V (EpK)

p
nV (Γ−pK)−

p
n .

According to the condition of equality holds in inequality (2.5), we know the
equality holds in the inequality (3.4) if and only if Γ−pK and EpK are dilates,
thus the equality holds in the inequality (3.4) if and only if Γ−pK is an ellipsoid
centered at the origin.

From Definition 1.2 we know that Lp-John ellipsoid EpK satisfy the condi-
tion as follows:

(3.5) V (K) ≥ Vp(K,EpK),

with equality if and only if K is an ellipsoid centered at the origin.
Combining with (3.4) and (3.5), we immediately obtain (3.2).
According to the condition of equality holds in inequalities (3.4) and (3.5),

we know the equality holds in (3.2) if and only if both Γ−pK andK are ellipsoid
centered at the origin, namely K must be an ellipsoid centered at the origin
in (3.2). In addition, we note that for p = 2 the equality holds in (3.2). The
proof of Lemma 3.2 is completed. □

Combined with the inequality (3.2) and the inequality (1.8), we immediately
obtain:

Lemma 3.3. If K ∈ Kn
e and 1 ≤ p ≤ ∞, then

(3.6) V (Γ−pK) ≥ 2−nωn(ncn−2,p)
−n

p V (K),

with equality for p = 2 if and only if K is a parallelotope, for p ̸= 2 if and only
if n = 1 and K is an origin-symmetrical line segment or n = 1 and p → ∞.
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Remark 3.1. When p = 2, note that ncn−2,2 = 1, then (3.6) is just the following
inequality by Lutwak, Yang and Zhang (see [8]):

(3.7) V (Γ−2K) ≥ 2−nωnV (K),

with quality if and only if K is a parallelotope.

Combined with the inequality (3.2) and the inequality (1.13), we immedi-
ately obtain the following inequality:

Lemma 3.4. Suppose K ⊂ Rn is a convex body positioned so that its John
point is at the origin, and 1 ≤ p ≤ ∞, then

(3.8) V (Γ−pK) ≥ n!ωn

n
n
2 (n+ 1)

n+1
2 (ncn−2,p)

n
p

V (K),

with quality for p = 2 if and only if K is a simplex, for p ̸= 2 if and only if
n = 1 and K is an origin-symmetrical line segment or n = 1 and p → ∞.

Now we give the proofs of theorems.

Proof of Theorem 1.1. First step: we prove that the left inclusion. Let V (EpK)
= λV (K) and K ∈ Kn

e . From Theorem B and Theorem C, we have

1

2n
ωn ≤ λ ≤ 1.

Put that
E = λ− 1

nEpK,

we obtain
V (E) = V (λ− 1

nEpK) = λ−1V (EpK) = V (K).

By Lemma 2.2 and note that 1 ≤ λ− 1
n ≤ 2ω

− 1
n

n , we have that for 0 < p ≤ 2
and 0 < q ≤ ∞,

EqE = E = λ− 1
nEpK ⊇ EpK ⊇ Γ−pK,

namely, for K ∈ Kn
e and 0 < p ≤ 2 and 0 < q ≤ ∞,

(3.9) EqE ⊇ Γ−pK and V (K) = V (E).

For 2 ≤ p ≤ ∞ and 0 < q ≤ ∞,

EqE = E = λ− 1
nEpK ⊆ 2ω

− 1
n

n EpK ⊆ 2ω
− 1

n
n Γ−pK,

namely, for K ∈ Kn
e , 2 ≤ p ≤ ∞ and 0 < q ≤ ∞,

(3.10) Γ−pK ⊇ 2−1ω
1
n
n EpE and V (K) = V (E).

The second step: we prove that the right inclusion of Theorem 1.1.
Since for p ≥ 1, Γ−pK is an origin-symmetric convex body, then there exists

an equivalent affine transformation ϕ ∈ SL(n) such that ϕ(Γ−pK) is a ball,
that is,

(3.11) ϕ(Γ−pK) =

(
V (Γ−pK)

ωn

) 1
n

Bn.
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Now we construct a parallelotope P with its known condition is satisfied.
Let C be the cube centered at the origin with the side length V (K)

1
n , so

V (C) = V (K).
For 0 < q ≤ ∞, by using Lemma 2.3, we know that EqC = JC. So, we have

(3.12) EqC = JC =
1

2
V (K)

1
nBn.

Therefore, if K ∈ Kn
e , 1 ≤ p ≤ ∞ and 0 < q ≤ ∞, from (3.11), (3.12) and

Theorem D, we have

ϕ(Γ−pK) =

(
V (Γ−pK)

ωn

) 1
n

Bn

= 2

(
V (Γ−pK)

ωnV (K)

) 1
n

· 1
2
V (K)

1
nBn

= 2

(
V (Γ−pK)

ωnV (K)

) 1
n

EqC ⊆ 2ω
− 1

n
n (ncn−2,p)

− 1
pEqC,

namely,

(3.13) ϕ(Γ−pK) ⊆ 2ω
− 1

n
n (ncn−2,p)

− 1
pEqC.

Using (3.13) and Theorem A, we have

ϕ(Γ−pK) ⊆ 2ω
− 1

n
n (ncn−2,p)

− 1
pEq(ϕϕ

−1C)

= 2ω
− 1

n
n (ncn−2,p)

− 1
pϕ(Eqϕ

−1C)

= ϕ
(
2ω

− 1
n

n (ncn−2,p)
− 1

pEq(ϕ
−1C)

)
,

it follows that

Γ−pK ⊆ 2ω
− 1

n
n (ncn−2,p)

− 1
pEq(ϕ

−1C).

Now put P = ϕ−1C, then for K ∈ Kn
e , 1 ≤ p ≤ ∞ and 0 < q ≤ ∞, we have

(3.14) Γ−pK ⊆ 2ω
− 1

n
n (ncn−2,p)

− 1
pEqP, and V (K) = V (C) = V (P ).

On the other hand, for K ∈ Kn
e , 1 ≤ p ≤ ∞ and 0 < q ≤ ∞, using the same

argument as in the first part of the proof and Lemma 3.3, we get

ϕ(Γ−pK) =

(
V (Γ−pK)

ωn

) 1
n

Bn

= 2

(
V (Γ−pK)

ωnV (K)

) 1
n

· 1
2
V (K)

1
nBn

= 2

(
V (Γ−pK)

ωnV (K)

) 1
n

EqC ⊇ (ncn−2,p)
− 1

pEqC,

namely

ϕ(Γ−pK) ⊇ (ncn−2,p)
− 1

pEqC.
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From this and Theorem A, we get

ϕ(Γ−pK) ⊇ (ncn−2,p)
− 1

pEq(ϕϕ
−1C)

= (ncn−2,p)
− 1

pϕ(Eqϕ
−1C)

= ϕ
(
(ncn−2,p)

− 1
pEq(ϕ

−1C)
)
.

It follows that

Γ−pK ⊇ (ncn−2,p)
− 1

pEq(ϕ
−1C).

Let P = ϕ−1C. Then for K ∈ Kn
e , 1 ≤ p ≤ ∞ and 0 < q ≤ ∞, we have

(3.15) Γ−pK ⊇ (ncn−2,p)
− 1

pEqP, and V (K) = V (C) = V (P ).

Combination of the above two steps, we know that the proof of Theorem 1.1
is completed. □

Proof of Theorem 1.2. As in the proof of Theorem 1.1, there exists ϕ ∈ SL(n)
such that ϕ(Γ−pK) is a ball, that is,

(3.16) ϕ(Γ−pK) =

(
V (Γ−pK)

ωn

) 1
n

Bn,

where p ≥ 1. Construct a regular simplex T ′ with inscribed ball radius

(3.17) r =

(
n!V (K)

n
n
2 (n+ 1)

n+1
2

) 1
n

.

By Lemma 2.5, we know V (T ′) = V (K).
From Eq.(3.17) and Lemma 2.4, we have

(3.18) EqT
′ = JT ′ = rBn =

(
n!V (K)

n
n
2 (n+ 1)

n+1
2

) 1
n

Bn.

Further, from Theorem D, (3.17) and (3.18), we have

ϕ(Γ−pK) =

(
V (Γ−pK)

ωn

) 1
n

Bn

=
1

r

(
V (Γ−pK)

ωn

) 1
n

rBn

=

(
n

n
2 (n+ 1)

n+1
2

n!

) 1
n
(
V (Γ−pK)

ωnV (K)

) 1
n

rBn

⊆
(
n

n
2 (n+ 1)

n+1
2

n!ωn

) 1
n

(ncn−2,p)
− 1

pEqT
′,

namely

ϕ(Γ−pK) ⊆ αn(ncn−2,p)
− 1

pEqT
′,
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where

αn =

(
n

n
2 (n+ 1)

n+1
2

n!ωn

) 1
n

.

From this and Theorem A, we get that

ϕ(Γ−pK) ⊆ αn(ncn−2,p)
− 1

pEq(ϕϕ
−1T ′) = ϕ

(
αn(ncn−2,p)

− 1
pEq(ϕ

−1T ′)
)
.

Let T = ϕ−1T ′. Then for K ∈ Kn
o , 1 ≤ p ≤ ∞ and 0 < q ≤ ∞, we have

(3.19) Γ−pK ⊆ αn(ncn−2,p)
− 1

pEqT and V (K) = V (T ′) = V (T ).

On the other hand, from the previous proof we know that for K is a convex
body positioned so that its John point is at the origin and 0 < q ≤ ∞,

(3.20) ϕ(Γ−pK) =

(
n

n
2 (n+ 1)

n+1
2

n!

) 1
n
(
V (Γ−pK)

ωnV (K)

) 1
n

EqT
′.

From (3.20) and Lemma 3.3, we have

ϕ(Γ−pK) =

(
n

n
2 (n+ 1)

n+1
2

n!

) 1
n
(
V (Γ−pK)

ωnV (K)

) 1
n

EqT
′

⊇
(
n

n
2 (n+ 1)

n+1
2

n!

) 1
n
(

n!

n
n
2 (n+ 1)

n+1
2 (ncn−2.p)

n
p

) 1
n

EqT
′

= (ncn−2,p)
− 1

pEqT
′.

By Theorem A, we have

ϕ(Γ−pK) ⊇ (ncn−2,p)
− 1

pEq(ϕϕ
−1T ′) = ϕ((ncn−2,p)

− 1
pEq(ϕ

−1T ′)),

namely

Γ−pK) ⊇ (ncn−2,p)
− 1

pEq(ϕ
−1T ′).

Let T = ϕ−1T ′. Then for K ⊂ Rn is a convex body positioned so that its John
point is at the origin, and 1 ≤ p ≤ ∞ and 0 < q ≤ ∞, then

Γ−pK) ⊇ (ncn−2,p)
− 1

pEqT and V (K) = V (T ′) = V (T ).

The proof of Theorem 1.2 is completed. □

4. Some corollaries of theorem

Take p → ∞ in Theorem 1.1, and note that

lim
p→∞

Γ−pK = K, lim
p→∞

(ncn−2,p)
1
p = 1,

we immediately get that:

Corollary 4.1. For any origin-symmetric convex body K, there exist an ellip-
soid E and a parallelotope P such that for 0 < q ≤ ∞,

2−1ω
1
n
n EqE ⊆ K ⊆ 2ω

− 1
n

n EqP and V (E) = V (K) = V (P ).
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Take q → ∞ in Theorem 1.1, and note that

lim
q→∞

EqP = JP,

we get that:

Corollary 4.2. For any origin-symmetric convex body K, there exist an ellip-
soid E and a parallelotope P such that for 0 < p ≤ 2,

JE ⊇ Γ−pK ⊇ (ncn−2,p)
− 1

p JP and V (E) = V (K) = V (P ).

For 2 ≤ p ≤ ∞,

2−1ω
1
n
n JE ⊆ Γ−pK ⊆ 2ω

− 1
n

n (ncn−2,p)
− 1

p JP and V (E) = V (K) = V (P ).

Take p = q = 2 in Theorem 1.1 and note that E2K = Γ−2K, we immediately
have that:

Corollary 4.3. For any origin-symmetric convex body K, there exist an ellip-
soid E and a parallelotope P such that

Γ−2E ⊇ Γ−2K ⊇ Γ−2P and V (E) = V (K) = V (P ),

2−1ω
1
n
n Γ−2E ⊆ Γ−2K ⊆ 2ω

− 1
n

n Γ−2P and V (E) = V (K) = V (P ).

Take p → ∞ or q → ∞ in Theorem 1.2, then we have that:

Corollary 4.4. For any convex body K whose John point is at the origin, there
exists a simplex T such that for 0 < q ≤ ∞,

αnEqT ⊇ K ⊇ EqT and V (K) = V (T ).

For 1 ≤ p ≤ ∞,

αn(ncn−2,p)
− 1

p JT ⊇ Γ−pK ⊇ (ncn−2,p)
− 1

p JT and V (K) = V (T ).

Take p → ∞ and q → ∞ in Theorem 1.2, we immediately have that:

Corollary 4.5. For any convex body K whose John point is at the origin, there
exists a simplex T such that

αnJT ⊇ K ⊇ JT and V (K) = V (T ).

Take p = q = 2 in Theorem 1.2, we immediately have that:

Corollary 4.6. For any convex body K whose John point is at the origin, there
exists a simplex T such that

Γ−2T ⊆ K ⊆ αnΓ−2T and V (T ) = V (K).

Acknowledgement. The authors are highly grateful to Proc. Leng Gangsong
and referees for their valuable comments and suggestions for improving the
paper.



DUAL Lp-CENTROID BODY AND Lp-JOHN ELLIPSOID 479

References

[1] K. M. Ball, An elementary introduction to modern convex geometry, Flavors of geometry,
1–58, Math. Sci. Res. Inst. Publ., 31, Cambridge Univ. Press, Cambridge, 1997.

[2] J. Jonasson, Optimization of shape in continuum percolation, Ann. Probab. 29 (2001),

no. 2, 624–635.
[3] F. John, Extremum problems with inequalities as subsidiary conditions, Studies and

Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, 187–204. Inter-
science Publishers, Inc., New York, N. Y., 1948.

[4] K. Leichtweiβ, Affine Geometry of Convex Bodies, J. A. Barth, Heidelberg, 1998.
[5] J. Lindenstrauss and V. D. Milman, Local Theory of Normal Spaces and Convexity,

Handbook of Convex Geometry (P. M. Gruber and J. M. Wills, eds.), North-Holland,
Amsterdam, 1993, 1149–1220.

[6] E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski
problem, J. Differential Geom. 38 (1993), no. 1, 131–150.

[7] , The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas,
Adv. in Math. 118 (1996), no. 2, 244–294.

[8] E. Lutwak, D. Yany, and G. Y. Zhang, A New Ellipsoid Associated with Convex Bodies,
Duke Math. J. 104 (2000), no. 3, 375–390.

[9] , Lp John ellipsoids, Proc. London Math. Soc. (3) 90 (2005), no. 2, 497–520.
[10] , Lp affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1,

111–132.
[11] E. Lutwak and G. Y. Zhang, Blaschke-Santaló inequalities, J Differential Geom. 47
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