• 제목/요약/키워드: Elementary mathematics textbooks

검색결과 417건 처리시간 0.019초

Analysis of the contents of Practice and Synthetic Application area in Yanbian Textbooks (중국 연변 수학 교과서의 실천과 종합응용 영역에 나타난 학습내용 분석)

  • Lee, Daehyun
    • Journal of the Korean School Mathematics Society
    • /
    • 제16권2호
    • /
    • pp.319-335
    • /
    • 2013
  • Chinese mathematical curriculum is divided 4 areas(number and algebra, space and figure, statistics and probability, practice and synthetic application). The purpose of this paper is to analyze the contents of the practice and synthetic application in yanbian elementary textbook. For this, 12-textbook which was published in yeonbeon a publishing company is analyze by topic, mathematical process, area of content and mathematical activity. mathematical process The following results have been drawn from this study. First, contextual backgrounds of practice are restricted in classroom. The contents of synthetic application are limited in connection of mathematical areas. Mathematical problem solving is a main in mathematical process, whereas reasoning activity is a few. Mathematical experience activity is a main in mathematical process, whereas synthetic activity is a few. We can use the suggestions of this paper for development of textbook and the contents of mathematical process.

  • PDF

Features of sample concepts in the probability and statistics chapters of Korean mathematics textbooks of grades 1-12 (초.중.고등학교 확률과 통계 단원에 나타난 표본개념에 대한 분석)

  • Lee, Young-Ha;Shin, Sou-Yeong
    • Journal of Educational Research in Mathematics
    • /
    • 제21권4호
    • /
    • pp.327-344
    • /
    • 2011
  • This study is the first step for us toward improving high school students' capability of statistical inferences, such as obtaining and interpreting the confidence interval on the population mean that is currently learned in high school. We suggest 5 underlying concepts of 'discretion of contingency and inevitability', 'discretion of induction and deduction', 'likelihood principle', 'variability of a statistic' and 'statistical model', those are necessary to appreciate statistical inferences as a reliable arguing tools in spite of its occasional erroneous conclusions. We assume those 5 concepts above are to be gradually developing in their school periods and Korean mathematics textbooks of grades 1-12 were analyzed. Followings were found. For the right choice of solving methodology of the given problem, no elementary textbook but a few high school textbooks describe its difference between the contingent circumstance and the inevitable one. Formal definitions of population and sample are not introduced until high school grades, so that the developments of critical thoughts on the reliability of inductive reasoning could not be observed. On the contrary of it, strong emphasis lies on the calculation stuff of the sample data without any inference on the population prospective based upon the sample. Instead of the representative properties of a random sample, more emphasis lies on how to get a random sample. As a result of it, the fact that 'the random variability of the value of a statistic which is calculated from the sample ought to be inherited from the randomness of the sample' could neither be noticed nor be explained as well. No comparative descriptions on the statistical inferences against the mathematical(deductive) reasoning were found. Few explanations on the likelihood principle and its probabilistic applications in accordance with students' cognitive developmental growth were found. It was hard to find the explanation of a random variability of statistics and on the existence of its sampling distribution. It is worthwhile to explain it because, nevertheless obtaining the sampling distribution of a particular statistic, like a sample mean, is a very difficult job, mere noticing its existence may cause a drastic change of understanding in a statistical inference.

  • PDF

An Analysis on the Elementary 2nd·3rd Students' Problem Solving Ability in Addition and Subtraction Problems with Natural Numbers (초등학교 2·3학년 학생들의 자연수의 덧셈과 뺄셈에 대한 문제해결 능력 분석)

  • Jeong, So Yun;Lee, Dae Hyun
    • Education of Primary School Mathematics
    • /
    • 제19권2호
    • /
    • pp.127-142
    • /
    • 2016
  • The purpose of this study was to examine the students' problem solving ability according to numeric expression and the semantic types of addition and subtraction word problems. For this, a research was to analyze the addition and subtraction calculation ability, word problem solving ability of the selected $2^{nd}$ grade(118) and 3rd grade(109) students. We got the conclusion as follows: When the students took the survey to assess their ability to solve the numerical expression and the word problems, the correct answer rates of the result unknown problems was larger than those of the change unknown problems or the start unknown problems. the correct answer rates of the change add-into situation was larger than those of the part-part-whole situation in the result unknown addition word problems: they often presented in text books. And, in the cases of the result unknown subtraction word problems that often presented in text books, the correct answer rates of the change take-away situation was the largest. It seemed probably because the students frequently experienced similar situations in the textbooks. We know that the formal calculation ability of the students was a precondition for successful word problem solving, but that it was not a sufficient condition for that.

The Influence of Mathematical Tasks on Mathematical Communication (수학적 과제가 수학적 의사소통에 미치는 영향)

  • Lee, Mi-Yeon;Oh, Young-Youl
    • Journal of Educational Research in Mathematics
    • /
    • 제17권4호
    • /
    • pp.395-418
    • /
    • 2007
  • The purpose of this study was to analyze the influence of mathematical tasks on mathematical communication. Mathematical tasks were classified into four different levels according to cognitive demands, such as memorization, procedure, concept, and exploration. For this study, 24 students were selected from the 5th grade of an elementary school located in Seoul. They were randomly assigned into six groups to control the effects of extraneous variables on the main study. Mathematical tasks for this study were developed on the basis of cognitive demands and then two different tasks were randomly assigned to each group. Before the experiment began, students were trained for effective communication for two months. All the procedures of students' learning were videotaped and transcripted. Both quantitative and qualitative methods were applied to analyze the data. The findings of this study point out that the levels of mathematical tasks were positively correlated to students' participation in mathematical communication, meaning that tasks with higher cognitive demands tend to promote students' active participation in communication with inquiry-based questions. Secondly, the result of this study indicated that the level of students' mathematical justification was influenced by mathematical tasks. That is, the forms of justification changed toward mathematical logic from authorities such as textbooks or teachers according to the levels of tasks. Thirdly, it found out that tasks with higher cognitive demands promoted various negotiation processes. The results of this study implies that cognitively complex tasks should be offered in the classroom to promote students' active mathematical communication, various mathematical tasks and the diverse teaching models should be developed, and teacher education should be enhanced to improve teachers' awareness of mathematical tasks.

  • PDF

The Effects of Visual Representations on Learning Proportional Expressions and Distributions (시각적 표현이 비례식과 비례배분 학습에 미치는 효과)

  • Son, Kyunghoon
    • Education of Primary School Mathematics
    • /
    • 제21권4호
    • /
    • pp.445-459
    • /
    • 2018
  • The purpose of this study is to provide a method to help elementary school students learn ratio-related concepts effectively through visual representations. This study was conducted to identify the differences in the composition of ratio-related concepts between Korean and Singaporean textbooks, reconstruct a unit of proportional expressions and distributions by using visual representations and confirm the differences in performance between an experimental and a comparison group of 6th grade students. While the experimental group mathematics lessons is from the reconstructed textbook, the comparison group lessons is from an existing textbook that does not include any reconstructive representations. A t-test of mean was applied to determine the differences between the experimental and comparison group. Analysis revealed significant differences in the mean between the experimental group and the comparison group, and the intermediate level group showed more improvement compared to the higher and lower level groups. An implication of this study is that the application of visual representations can assist students' understanding of ratio-related concepts.

A Survey on the Proportional Reasoning Ability of Fifth, Sixth, and Seventh Graders (5, 6, 7학년 학생들의 비례추론 능력 실태 조사)

  • Ahn, Suk-Hyun;Pang, Jeong-Suk
    • Journal of Educational Research in Mathematics
    • /
    • 제18권1호
    • /
    • pp.103-121
    • /
    • 2008
  • The primary purpose of this study was to gather knowledge about $5^{th},\;6^{th},\;and\;7^{th}$ graders' proportional reasoning ability by investigating their reactions and use of strategies when encounting proportional or nonproportional problems, and then to raise issues concerning instructional methods related to proportion. A descriptive study through pencil-and-paper tests was conducted. The tests consisted of 12 questions, which included 8 proportional questions and 4 nonproportional questions. The following conclusions were drawn from the results obtained in this study. First, for a deeper understanding of the ratio, textbooks should treat numerical comparison problems and qualitative prediction and comparison problems together with missing-value problems. Second, when solving missing-value problems, students correctly answered direct-proportion questions but failed to correctly answer inverse-proportion questions. This result highlights the need for a more intensive curriculum to handle inverse-proportion. In particular, students need to experience inverse-relationships more often. Third, qualitative reasoning tends to be a more general norm than quantitative reasoning. Moreover, the former could be the cornerstone of proportional reasoning, and for this reason, qualitative reasoning should be emphasized before proportional reasoning. Forth, when dealing with nonproportional problems about 34% of students made proportional errors because they focused on numerical structure instead of comprehending the overall relationship. In order to overcome such errors, qualitative reasoning should be emphasized. Before solving proportional problems, students must be enriched by experiences that include dealing with direct and inverse proportion problems as well as nonproportional situational problems. This will result in the ability to accurately recognize a proportional situation.

  • PDF

A Study on Content Analysis and Types of Forest Education According to the 2015 Revised Curriculum (2015 개정 초등교육과정 내 산림교육 내용분석 및 유형화 연구)

  • Choi, Seon Hye;Ha, Si Yeon
    • Journal of Korean Society of Forest Science
    • /
    • 제110권4호
    • /
    • pp.689-710
    • /
    • 2021
  • The purpose of this study was to analyze contents of the elementary school textbooks on 'Forest Education' based on the 2015 revised curriculum. This study is designed to determine the status of forest educationrelated content in the curriculum. Thetypesofforesteducationintextbooksweredividedintoanalysis. In addition, the standards of achievement of the curriculum were analyzed into the areas of forest education curriculum to determine the similarities between the curriculum and the achievement of forest education. This study shows that, first, the field of knowledge in forest education was included in all subjects and grades except mathematics. It noted that the curriculum includes areas of knowledge that directly convey knowledge related to forest education. This showed that the forest education knowledge area is linked to various courses. Second, the types of forest education included in the curriculum appeared differently depending on age. In the lower grades, there was the most information on the tools and sensibilities of forest education, and in the higher grades, the more knowledge and value-related areas were addressed. As the school year increases, so do forest education levels. Third, when analyzing the achievement criteria in the curriculum, the curriculum achievement criteria included key points in forest education. Thus, this study confirmed the link between the curriculum and forest education.