• Title/Summary/Keyword: Elemental Distribution

Search Result 173, Processing Time 0.04 seconds

Development and Evaluation of Natural Hydroxyapatite Ceramics Produced by the Heat Treatment of Pig Bones

  • Lim, Ki-Taek;Kim, Jin-Woo;Kim, Jangho;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.227-234
    • /
    • 2014
  • Purpose: The aim of this research was to develop and evaluate natural hydroxyapatite (HA) ceramics produced from the heat treatment of pig bones. Methods: The properties of natural HA ceramics produced from pig bones were assessed in two parts. Firstly, the raw materials were characterized. A temperature of $1,200^{\circ}C$ was chosen as the calcination temperature. Fine bone powders (BPs) were produced via calcinations and a milling process. Sintered BPs were then characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, and a 2-year in vitro degradability test. Secondly, an indirect cytotoxicity test was conducted on human osteoblast-like cells, MG63, treated with the BPs. Results: The average particle size of the BPs was $20{\pm}5{\mu}m$. FE-SEM showed a non-uniform distribution of the particle size. The phase obtained from XRD analysis confirmed the structure of HA. Elemental analysis using XRF detected phosphorus (P) and calcium (Ca) with the Ca/P ratio of 1.6. Functional groups examined by FTIR detected phosphate ($PO{_4}^{3-}$), hydroxyl ($OH^-$), and carbonate ($CO{_3}^{2-}$). The EDX, XRF, and FTIR analysis of BPs indicated the absence of organic compounds, which were completely removed after annealing at $1,200^{\circ}C$. The BPs were mostly stable in a simulated body fluid (SBF) solution for 2 years. An indirect cytotoxicity test on natural HA ceramics showed no threat to the cells. Conclusions: In conclusion, the sintering temperature of $1,200^{\circ}C$ affected the microstructure, phase, and biological characteristics of natural HA ceramics consisting of calcium phosphate. The Ca-P-based natural ceramics are bioactive materials with good biocompatibility; our results indicate that the prepared HA ceramics have great potential for agricultural and biological applications.

Microstructure Analysis of Rabbit and Chicken Femurs by Light Microscopy and Transmission Electron Microscopy (광학현미경과 투과전자현미경을 이용한 토끼와 닭 대퇴골의 미세구조 분석)

  • Kim, Chang-Yeon;Kim, Eun-Kyung;Jeon, Tae-Hoon;Nam, Seung-Won;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.40 no.3
    • /
    • pp.155-162
    • /
    • 2010
  • Bone is a hierarchically structured composite material which has been well studied by the materials engineering community because of its unique structure and mechanical properties. Bone is a laminated organic-inorganic composite composed of primarily hydroxyapatite, collagen and water. The main mineral that gives bone's hardness is calcium phosphate, which is also known as hydroxyapatite. Light microscopy (LM) and transmission electron microscopy (TEM) were used to study the structure of femurs from chicken and rabbit. The elemental analysis was used to search variation in the distribution of calcium, potassium and oxygen in the femur. Current investigation focused on two structural scales: micro scale (arrangement of compact bone) and nano scale (collagen fibril and apatite crystals). At micro scale, distinct difference was found in microstructures of chicken femur and rabbit femur. At nano scale, we analyzed the shape and size of apatite crystals and the arrangement of collagen fibril. Consequently, femurs of chicken and rabbit had very similar chemical property and structures at nano scale despite of their different species.

The Characterization of Spherical Particles in S/G Sludge (S/G 슬러지 중 구형입자의 특성측정)

  • Pyo Hyung-Yeal;Park Yang-Soon;Park Sun-Dal;Park Yong-Joon;Park Kyoung-Kyun
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.129-136
    • /
    • 2005
  • There should not be ion exchange resin particles in S/G sludge. The suspicious spherical resin particles observed in S/G sludge sample were characterized for particle size distribution under optical microscope using the micro-technique, for element analysis by the electron probe micro analysis (EPMA), and for molecular identification by the IR spectroscopy The particle sizes are distributed from 1 to 200 ${\mu}m$ for the sludge, while 40 to 500 ${\mu}m$ for the spherical resin particles. The results of the elemental analysis showed different major impurities: Si, Al, Mn, Cr, Ni, Zn and Ti for the sludge particles, while Si, Cu, Zn for the spherical resin particles. However, both particles contain Fe as a matrix of hematite ($Fe_{3}O_4$). IR spectrum of the spherical particles was quite different from that of ion exchange resins used in S/G system. These results indicate that the spherical particles are not related to ion exchange resin particles and formed by the process of the sludge formation.

  • PDF

Synthesis and Characterization of La0.75Sr0.25FeO3 Used as Cathode Materials for Solid Oxide Fuel Cell by GNP Method (GNP법을 이용한 고체산화물 연료전지의 공기극용 La0.75Sr0.25FeO3의 제조 및 특성)

  • Park, Ju-Hyun;Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Yun, Ki-Seok;Yoon, Soon-Gil;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • We synthesized and investigated $La_{0.75}Sr_{0.25}FeO_3$ by Glycine Nitrate Process(GNP) method used as cathode materials for SOFC(solid oxide fuel cell). Optimized amount of glycine is 3.17 mol. ICP elemental composition analysis indicated that the stoichiometry of the synthesized powders have nearly nominal values. SEM images and XRD patterns reveal that the synthesized powder has uniform size distribution and high degree of crystallinity. The sample powders were isostatically pressed to form a pellet. The green body was sintered at $1200^{\circ}C$ and the relative density of the sintered specimens were measured by Archimedes mettled. We measured electrochemical performance of LSF by AC impedance spectroscopy. Resistance of LSF shows lower value than that of LSM throughout all temperature region. The anode-supported solid oxide fuel cell showed a performance of $342mW/cm^2(0.7V,\;488mA/cm^2)$ at $750^{\circ}C$. The electrochemical characteristics of the single cell were examined by at impedance method.

Synthesis and Properties of Nonlinear Optical Polyquinonediimine Containing Di-Azobenzene Group in the Side Chain (곁사슬에 디아조벤젠기를 갖는 비선형 광학 폴리퀴논디이민의 합성과 특성에 관한 연구)

  • Lee, Sang-Bae;Yang, Jung-Sung;Park, Dong-Kyu
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.496-502
    • /
    • 2001
  • Thermally stable polyquinonediimines(PQDI) containing di-azobenzene in the side chain were synthesized by means of condensation polymerization under $TiCl_4$. The synthesized monomers and polymers were identified by FT-IR, $^1H-NMR$, and elemental analysis. Especially, the polymerization of PQDI was confirmed by the double-bonding peak of >C=N appearing near 1625cm$^{-1}$ in FT-IR spectrum. PQDI with di-azobenzene group in one side chain was insoluble in methanol, acetone and non-polar solvents having big dielectric constant, but had good solubility in polar solvents having small dielectric constant. Molecular weight distribution of PQDI measured by GPC was 1.38. It was confirmed to be amorphous polymer through X-ray diffraction by the appearance of the halo in case of PQDI containing di-azobenzene in the side chain. The glass transition temperature ($_g$) of synthesized polymer was measured to be 116$^{\circ}C$ by differential scanning calorimetry. The SHG value for ${\chi}^{(2)}$ was 1.2 pm/V (${\lambda}$ = 1.542 ${\mu}$m). The SHG value slightly decreased in an early stage but showed temporal stability after 20 hours.

  • PDF

Characterization of Charcoals prepared by Korean Traditional Kiln (우리나라 전통 숯가마로부터 생산된 숯의 특성분석)

  • An, Ki Sun;Kwak, Lee Ku;Kim, Hong Gun;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.208-216
    • /
    • 2022
  • Surface morphology and adsorption characteristics of black and white charcoals prepared from Korean traditional kiln were quantitatively analyzed. TGA and elemental analysis of charcoals were different from produced kiln, and thermal degradation temperature and carbon content of white charcoals were apparently higher than those of black charcoals. Surface morphology shows the activation progressed through the longitudinal direction of woods and new micropores were developed to radial direction on the surface of macropores as the furthermore activation resulting in the pore connection. BET adsorption isotherms show that there are low-pressure hysteresis due to the no desorption of adsorbates, which resulted in unique Type of charcoals overlapping Type I and Type IV. Such a low-pressure hysteresis is occurred from expansion of adsorbates, which were embedded in the micropore entrances and did not get out during the desorption run. The characteristics of charcoals such as specific surface area and pore size distribution did not show correct values depending on not only produced company but also sampling sites of one piece of charcoal. Therefore, it is not easy to suggest the quantitative characteristics of charcoals prepared from Korean traditional kiln. On the other hand, preparation the quality standard of charcoal is necessary for their special uses such as adsorbent.

Raman Spectroscopic Study for Investigating the Spatial Distribution and Structural Characteristics of Mn-bearing Minerals in Non-spherical Ferromanganese Nodule from the Shallow Arctic Ocean (북극해 천해저 비구형 망가니즈단괴 내 광물종 분포 및 구조적 특성 규명을 위한 라만 분광분석 연구)

  • Sangmi, Lee;Hyo-Jin, Koo;Hyen-Goo, Cho; Hyo-Im, Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.409-421
    • /
    • 2022
  • Achieving a highly resolved spatial distribution of Mn-bearing minerals and elements in the natural ferromanganese nodules can provide detailed knowledge of the temporal variations of geochemical conditions affecting the formation processes of nodules. While a recent study utilizing Raman spectroscopy has reported the changes in the manganate mineral phases with growth for spherical nodules from the Arctic Sea, the distributions of minerals and elements in the nodules from the shallow Arctic Sea with non-spherical forms have not yet fully elucidated. Here, we reported the micro-laser Raman spectra with varying data acquisition points along three different profiles from the center to the outermost rim of the non-spherical ferromanganese nodules collected from the East Siberian Sea (~73 m). The elemental distributions in the nodule (such as Mn, Fe, etc.) were also investigated by energy dispersive X-ray spectroscopy (EDS) analysis to observe the internal structure and mineralogical details. Based on the microscopic observation, the internal structures of a non-spherical nodule can be divided into three different regions, which are sediment-rich core, iron-rich substrate, and Mn-Fe layers. The Raman results show that the Mn-bearing mineral phases vary with the data acquisition points in the Mn-Fe layer, suggesting the changes in the geochemical conditions during nodule formation. In addition, we also observe that the mineral composition and structural characteristics depend on the profile direction from the core to the rim. Particularly, the Raman spectra obtained along one profile show the lack of Fe-(oxy)hydroxides and the noticeably high crystallinity of Mn-bearing minerals such as birnessite and todorokite. On the other hand, the spectra obtained along the other two profiles present the presence of significant amount of amorphous or poorly-ordered Fe-bearing minerals and the low crystallinity of Mn-bearing minerals. These results suggest that the diagenetic conditions varied with the different growth directions. We also observed the presence of halite in several layers in the nodule, which can be evidence of the alteration of seawater after nodule formation. The current results can provide the opportunity to obtain detailed knowledge of the formation process and geochemical environments recorded in the natural non-spherical ferromanganese nodule.

Composition comparison of PM10 and PM2.5 fine particulate matter for Asian dust and haze events of 2010-2011 at Gosan site in Jeju Island (황사와 연무 시 PM10 및 PM2.5 미세먼지 조성 비교: 2010-2011년 고산지역 측정)

  • Kim, Ki-Ju;Lee, Seung-Hoon;Hyeon, Dong-Rim;Ko, Hee-Jung;Kim, Won-Hyung;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • The $PM_{10}$ and $PM_{2.5}$ samples were collected at Gosan Site of Jeju Island, and analyzed, in order to investigate the size distribution and pollution characteristics of their components. $NH{_4}{^+}$, nss-$SO{_4}^{2-}$, $K^+$, and $CH_3COO^-$ were mostly existed in fine particles. Meanwhile, $NO{_3}{^-}$ was distributed in both fine and coarse particles, and $Na^+$, $Cl^-$, $Mg^{2+}$, nss-$Ca^{2+}$ were rich in coarse particle mode. The concentrations of nss-$Ca^{2+}$ and $NO{_3}{^-}$ were increased 36.7 and 3.2 times in coarse particles, and 15.0 and 3.1 times in fine particles during the Asian Dust periods. Especially, the concentrations of crustal elemental species such as Al, Fe, Ca, K, Mg, Ti, Mn, Sr, Ba were highly increased for those periods. In the haze events, the concentrations of secondary air pollutants were increased 1.3~2.6 and 1.5~4.2 times in coarse and fine particles, respectively. Moreover, the remarkable increase of $NO{_3}{^-}$ concentration was also observed in fine particle mode. The factor analysis showed that the composition of coarse particles was influenced mainly by marine sources, followed by soil and anthropogenic sources. On the other hand, the fine particles were influenced by anthropogenic sources, followed by marine and soil sources.

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.

Last Glacial Maximum-Holocene Variability in Geochemical Records of a Core Sediment from the Southern Part of the Ulleung Basin, East Sea: Implications for Paleoceanographic Changes (동해 울릉분지 남단 주상퇴적물에 대한 최종빙기-홀로세간의 지화학적 기록 변화: 고해양환경 변화)

  • Huh, Sik;Han, Sang-Joon;Hyun, Sang-Min
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.71-80
    • /
    • 2001
  • To understand paleoceanographic environmental changes in the Esat Sea during the transitional period between Holocene and last glacial maximum, geochemical high resolution study was conducted by using a piston core(95PC-1) samples collected from the southernmost part of the Ulleung Basin. Geochemical results reveal that major distinctive paleoceanographic variations in transitional period are prominent. Major elemental concentrations show distinctive variations between glacial and Holocene suggesting changes in sediment supply. $TiO_2/Al_2O_3$ ratio of the sediment indicates different sediment composition between Holocene and glacial period. The content of total organic carbon ranging from 0.5% to 4% during transitional period. These vslues showed 2-4 times and two times higher than those of last glacial and Holocene, respectively. The C/N ratios deduced from organic matters exceed10 during transitional period suggesting terrigenous organic matter are supplied from continent, especially during last glacial maximum. Carbonate contents are relatively stable during Holocene and last glacial maximum with gradual decrease during glacial period with high fluctuation during transitional period. The variations of chemical index of weathering (CIW) also show a distinctive variation between glacial and Holocene, which is coincident with those of carbonate and organic carbon. The grain size distribution indicates that the difference content of silt fraction during Holocene and glacial period is closely related with climatic effect during glacial period. Therefore geochemical differences in sediment composition between Holocene and last glacial maximum is thought to be related to paleoceanographic, sea-level change and local paleoclimatic changes.

  • PDF