Browse > Article
http://dx.doi.org/10.22807/KJMP.2022.35.4.409

Raman Spectroscopic Study for Investigating the Spatial Distribution and Structural Characteristics of Mn-bearing Minerals in Non-spherical Ferromanganese Nodule from the Shallow Arctic Ocean  

Sangmi, Lee (Department of Geology, Gyeongsang National University)
Hyo-Jin, Koo (Department of Geology, Gyeongsang National University)
Hyen-Goo, Cho (Department of Geology, Gyeongsang National University)
Hyo-Im, Kim (Department of Geology, Gyeongsang National University)
Publication Information
Korean Journal of Mineralogy and Petrology / v.35, no.4, 2022 , pp. 409-421 More about this Journal
Abstract
Achieving a highly resolved spatial distribution of Mn-bearing minerals and elements in the natural ferromanganese nodules can provide detailed knowledge of the temporal variations of geochemical conditions affecting the formation processes of nodules. While a recent study utilizing Raman spectroscopy has reported the changes in the manganate mineral phases with growth for spherical nodules from the Arctic Sea, the distributions of minerals and elements in the nodules from the shallow Arctic Sea with non-spherical forms have not yet fully elucidated. Here, we reported the micro-laser Raman spectra with varying data acquisition points along three different profiles from the center to the outermost rim of the non-spherical ferromanganese nodules collected from the East Siberian Sea (~73 m). The elemental distributions in the nodule (such as Mn, Fe, etc.) were also investigated by energy dispersive X-ray spectroscopy (EDS) analysis to observe the internal structure and mineralogical details. Based on the microscopic observation, the internal structures of a non-spherical nodule can be divided into three different regions, which are sediment-rich core, iron-rich substrate, and Mn-Fe layers. The Raman results show that the Mn-bearing mineral phases vary with the data acquisition points in the Mn-Fe layer, suggesting the changes in the geochemical conditions during nodule formation. In addition, we also observe that the mineral composition and structural characteristics depend on the profile direction from the core to the rim. Particularly, the Raman spectra obtained along one profile show the lack of Fe-(oxy)hydroxides and the noticeably high crystallinity of Mn-bearing minerals such as birnessite and todorokite. On the other hand, the spectra obtained along the other two profiles present the presence of significant amount of amorphous or poorly-ordered Fe-bearing minerals and the low crystallinity of Mn-bearing minerals. These results suggest that the diagenetic conditions varied with the different growth directions. We also observed the presence of halite in several layers in the nodule, which can be evidence of the alteration of seawater after nodule formation. The current results can provide the opportunity to obtain detailed knowledge of the formation process and geochemical environments recorded in the natural non-spherical ferromanganese nodule.
Keywords
Non-spherical ferromanganese nodules; Raman spectroscopy; Shallow arctic ocean; Manganese oxide minerals; Crystallinity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Usui, A. and Mita, N., 1995, Geochemistry and mineralogy of a modern buserite deposit from a hot spring in Hokkaido, Japan. Clays and Clay Minerals, 43, 116-127.   DOI
2 Usui, A., Nishi, K., Sato, H., Nakasato, Y., Thornton, B., Kashiwabara, T., Tokumaru, A., Sakaguchi, A., Yamaoka, K., Kato, S., Nitahara, S., Suzuki, K., Iijima, K. and Urabe, T., 2017, Continuous growth of hydrogenetic ferromanganese crusts since 17Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800-5500 m. Ore Geology Reviews, 87, 71-87.   DOI
3 Vereshchagin, O.S., Perova, E.N., Brusnitsyn, A.I., Ershova, V.B., Khudoley, A.K., Shilovskikh, V.V. and Molchanova, E.V., 2019, Ferro-manganese nodules from the Kara Sea: Mineralogy, geochemistry and genesis. Ore Geology Reviews, 106, 192-204.   DOI
4 Wegorzewski, A.V., Grangeon, S., Webb, S.M., Heller, C. and Kuhn, T., 2020, Mineralogical transformations in polymetallic nodules and the change of Ni, Cu and Co crystalchemistry upon burial in sediments. Geochimica et Cosmochimica Acta, 282, 19-37.   DOI
5 Wegorzewski, A.V. and Kuhn, T., 2014, The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean. Marine Geology, 357, 123-138.   DOI
6 Wegorzewski, A.V., Kuhn, T., Dohrmann, R., Wirth, R. and Grangeon, S., 2015, Mineralogical characterization of individual growth structures of Mn-nodules with different Ni+Cu content from the central Pacific Ocean. American Mineralogist, 100, 2497-2508.   DOI
7 Atkins, A.L., Shaw, S. and Peacock, C.L., 2014, Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments. Geochimica et Cosmochimica Acta, 144, 109-125.   DOI
8 Baturin, G. and Dubinchuk, V., 2011, The composition of ferromanganese nodules of the Chukchi and East Siberian Seas. Doklady Earth Sciences, 440, p. 1258-1264. Springer.   DOI
9 Bernardini, S., Bellatreccia, F., Casanova Municchia, A., Della Ventura, G. and Sodo, A., 2019, Raman spectra of natural manganese oxides. Journal of Raman Spectroscopy, 50, 873-888.
10 Bodei, S., Manceau, A., Geoffroy, N., Baronnet, A. and Buatier, M., 2007, Formation of todorokite from vernadite in Ni-rich hemipelagic sediments. Geochimica et Cosmochimica Acta, 71, 5698-5716.   DOI
11 Burns, R.G. and Burns, V.M., 1979, Manganese oxides. In R. Burns, Ed. Marine Minerals, 6, p. 1-46. Mineralogical Society of America.
12 Coak, M.J., Kim, Y.-H., Yi, Y.S., Son, S., Lee, S.K. and Park, J.-G., 2019, Electronic and vibrational properties of the two-dimensional Mott insulator V0.9PS3 under pressure. Physical Review B, 100, 035120.
13 Hein, J.R., Koschinsk, A., Bau, M., Manheim, F.T., Kang, J.-K. and Roberts, L., 2017, Cobalt-rich ferromanganese crusts in the Pacific. Handbook of marine mineral deposits, p. 239-279. Routledge.
14 Das, S. and Hendry, M.J., 2011, Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chemical Geology, 290, 101-108.   DOI
15 Dymond, J., Lyle, M., Finney, B., Piper, D.Z., Murphy, K., Conard, R. and Pisias, N., 1984, Ferromanganese nodules from MANOP Sites H, S, and R-Control of mineralogical and chemical composition by multiple accretionary processes. Geochimica et Cosmochimica Acta, 48, 931-949.   DOI
16 Halbach, P., Friedrich, G. and von Stackelberg, U., 1988, The manganese nodule belt of the Pacific Ocean: geological environment, nodule formation, and mining aspects, F. Enke.
17 Hein, J.R. and Koschinsky, A., 2014, Deep-Ocean Ferromanganese Crusts and Nodules. In H.D. Holland, and K.K. Turekian, Eds. Treatise on Geochemistry (Second Edition), p. 273-291. Elsevier, Oxford.
18 Hein, J.R., Koschinsky, A. and Kuhn, T., 2020, Deep-ocean polymetallic nodules as a resource for critical materials. Nature Reviews Earth & Environment, 1, 158-169.   DOI
19 Hein, J.R., Mizell, K., Koschinsky, A. and Conrad, T.A., 2013, Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51, 1-14.   DOI
20 Kim, E.J., Fei, Y.W. and Lee, S.K., 2016, Probing carbonbearing species and CO2 inclusions in amorphous carbon-MgSiO3 enstatite reaction products at 1.5 GPa: Insights from 13C high-resolution solid-state NMR. American Mineralogist, 101, 1113-1124.   DOI
21 Knaack, D.R., Leybourne, M.I., Layton-Matthews, D., McDonald, A.M., Vuletich, A., Chipley, D., Silva, L.G. and Pufahl, P.K., 2020, Manganese nodules NOD-A-1 and NOD-P-1: Implications of pre-treatment on oxygen isotopes and mineralogy. Chemical Geology, 558, 119924.
22 Kim, H., Kim, J., Hyun, S.P. and Kwon, K.D., 2022, Toward a mechanistic understanding of cesium adsorption to todorokite: A molecular dynamics simulation study. Journal of Hazardous Materials, 436, 129250.
23 Kim, H.-I., Cho, H. G., Lee, S., Koo, H. J., Hong, J. K. and Jin, Y. K., 2022, Spatial distribution of manganese oxide minerals in the natural ferromanganese nodule of the Arctic Sea: A view from Raman spectroscopy. in review
24 Kim, H.N., Park, C., Park, S.Y., Kim, H. and Kim, M.S., 2019, Partial melting-induced chemical evolution in shocked crystalline and amorphous plagioclase from the lunar meteorite Mount DeWitt 12007. Journal of Geophysical Research: Planets, 124, 1852-1863.   DOI
25 Kobayashi, T., Hirajima, T., Hiroi, Y. and Svojtka, M., 2008, Determination of SiO2 Raman spectrum indicating the transformation from coesite to quartz in Gfohl migmatitic gneisses in the Moldanubian Zone, Czech Republic. Journal of Mineralogical and Petrological Sciences, 103, 105-111.   DOI
26 Koo, H., Park, M., Seo, C. and Cho, H., 2021, Characteristics of non-spherical manganese nodule from the East Siberian Sea. Korean Journal of Mineralogy and Petrology, 34, 241-253.   DOI
27 Koo, H.J., Cho, H.G., Yoo, C.M. and Jin, Y.K., 2017, Characteristics of Manganese Nodule from the East Siberian Sea. Journal of the mineralogical society of korea, 30, 219-227.   DOI
28 Koschinsky, A., Bau, M., Marbler, H. and Schmidt, K., 2010, Rare valuable metals in marine ferromanganese nodules-contents and accumulation processes. Zeitschrift fur angewandte Geologie, 51, 33-39.
29 Kuhn, T., Versteegh, G., Villinger, H., Dohrmann, I., Heller, C., Koschinsky, A., Kaul, N., Ritter, S., Wegorzewski, A. and Kasten, S., 2017, Widespread seawater circulation in 18-22 Ma oceanic crust: Impact on heat flow and sediment geochemistry. Geology, 45, 799-802.   DOI
30 Koschinsky, A. and Halbach, P., 1995, Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochimica et Cosmochimica Acta, 59, 5113-5132.   DOI
31 Kwon, K.D., Refson, K. and Sposito, G., 2013, Understanding the trends in transition metal sorption by vacancy sites in birnessite. Geochimica et Cosmochimica Acta, 101, 222-232.   DOI
32 Lee, S.K., Lin, J.F., Cai, Y.Q., Hiraoka, N., Eng, P.J., Okuchi, T., Mao, H.K., Meng, Y., Hu, M.Y., Chow, P., Shu, J., Li, B., Fukui, H., Lee, B.H., Kim, H.N. and Yoo, C.S., 2008, X-ray Raman scattering study of MgSiO3 glass at high pressure: implication for triclustered MgSiO3 melt in Earth's mantle. Proceedings of the National Academy of Sciences of the United States of America, 105, 7925-9.   DOI
33 Liao, J., Sun, X., Wu, Z., Sa, R., Guan, Y., Lu, Y., Li, D., Liu, Y., Deng, Y. and Pan, Y., 2019, Fe-Mn (oxyhydr)oxides as an indicator of REY enrichment in deep-sea sediments from the central North Pacific. Ore Geology Reviews, 112, 103044.
34 Ling, F.T., Post, J.E., Heaney, P.J. and Ilton, E.S., 2018, The relationship between Mn oxidation state and structure in triclinic and hexagonal birnessites. Chemical Geology, 479, 216-227.   DOI
35 Ling, F.T., Post, J.E., Heaney, P.J., Santelli, C.M., Ilton, E.S., Burgos, W.D. and Rose, A.W., 2020, A multi-method characterization of natural terrestrial birnessites. American Mineralogist, 105, 833-847.   DOI
36 Oda, H., Nakasato, Y. and Usui, A., 2018. Characterization of marine ferromanganese crust from the Pacific using residues of selective chemical leaching: Identification of fossil magnetotactic bacteria with FE-SEM and rock magnetic methods. Earth, Planets and Space, 70, 165.
37 Lopano, C.L., Heaney, P.J., Post, J.E., Hanson, J. and Komarneni, S., 2007, Time-resolved structural analysis of K-and Baexchange reactions with synthetic Na-birnessite using synchrotron X-ray diffraction. American Mineralogist, 92, 380-387.   DOI
38 Manceau, A., Lanson, M. and Takahashi, Y., 2014, Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule. American Mineralogist, 99, 2068-2083.   DOI
39 Mazzetti, L. and Thistlethwaite, P., 2002, Raman spectra and thermal transformations of ferrihydrite and schwertmannite. Journal of Raman Spectroscopy, 33, 104-111.   DOI
40 Peacock, C.L. and Sherman, D.M., 2007, Crystal-chemistry of Ni in marine ferromanganese crusts and nodules. American Mineralogist, 92, 1087-1092.   DOI
41 Post, J.E., 1999, Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences, 96, 3447-3454.   DOI
42 Post, J.E., McKeown, D.A. and Heaney, P.J., 2020, Raman spectroscopy study of manganese oxides: Tunnel structures. American Mineralogist, 105, 1175-1190.   DOI
43 Post, J.E., McKeown, D.A. and Heaney, P.J., 2021, Raman spectroscopy study of manganese oxides: Layer structures. American Mineralogist, 106, 351-366.   DOI
44 Tebo, B.M., Clement, B., Dick, G., Murray, K., Parker, D., Verity, R., Bargar, J. and Webb, S.M., 2004, Biogenic manganese oxides: properties and mechanisms of formation.