DOI QR코드

DOI QR Code

Raman Spectroscopic Study for Investigating the Spatial Distribution and Structural Characteristics of Mn-bearing Minerals in Non-spherical Ferromanganese Nodule from the Shallow Arctic Ocean

북극해 천해저 비구형 망가니즈단괴 내 광물종 분포 및 구조적 특성 규명을 위한 라만 분광분석 연구

  • Sangmi, Lee (Department of Geology, Gyeongsang National University) ;
  • Hyo-Jin, Koo (Department of Geology, Gyeongsang National University) ;
  • Hyen-Goo, Cho (Department of Geology, Gyeongsang National University) ;
  • Hyo-Im, Kim (Department of Geology, Gyeongsang National University)
  • 이상미 (경상국립대학교 지질과학과) ;
  • 구효진 (경상국립대학교 지질과학과) ;
  • 조현구 (경상국립대학교 지질과학과) ;
  • 김효임 (경상국립대학교 지질과학과)
  • Received : 2022.11.18
  • Accepted : 2022.12.13
  • Published : 2022.12.31

Abstract

Achieving a highly resolved spatial distribution of Mn-bearing minerals and elements in the natural ferromanganese nodules can provide detailed knowledge of the temporal variations of geochemical conditions affecting the formation processes of nodules. While a recent study utilizing Raman spectroscopy has reported the changes in the manganate mineral phases with growth for spherical nodules from the Arctic Sea, the distributions of minerals and elements in the nodules from the shallow Arctic Sea with non-spherical forms have not yet fully elucidated. Here, we reported the micro-laser Raman spectra with varying data acquisition points along three different profiles from the center to the outermost rim of the non-spherical ferromanganese nodules collected from the East Siberian Sea (~73 m). The elemental distributions in the nodule (such as Mn, Fe, etc.) were also investigated by energy dispersive X-ray spectroscopy (EDS) analysis to observe the internal structure and mineralogical details. Based on the microscopic observation, the internal structures of a non-spherical nodule can be divided into three different regions, which are sediment-rich core, iron-rich substrate, and Mn-Fe layers. The Raman results show that the Mn-bearing mineral phases vary with the data acquisition points in the Mn-Fe layer, suggesting the changes in the geochemical conditions during nodule formation. In addition, we also observe that the mineral composition and structural characteristics depend on the profile direction from the core to the rim. Particularly, the Raman spectra obtained along one profile show the lack of Fe-(oxy)hydroxides and the noticeably high crystallinity of Mn-bearing minerals such as birnessite and todorokite. On the other hand, the spectra obtained along the other two profiles present the presence of significant amount of amorphous or poorly-ordered Fe-bearing minerals and the low crystallinity of Mn-bearing minerals. These results suggest that the diagenetic conditions varied with the different growth directions. We also observed the presence of halite in several layers in the nodule, which can be evidence of the alteration of seawater after nodule formation. The current results can provide the opportunity to obtain detailed knowledge of the formation process and geochemical environments recorded in the natural non-spherical ferromanganese nodule.

자연계에서 산출되는 망가니즈단괴 내 광물종 및 원소의 공간적 분포를 규명하는 것은 단괴의 형성 과정 중 변화하는 생성 환경 및 지화학적 조건에 대한 이해를 가능하게 한다. 최근의 라만 분광분석을 이용한 연구에서 구형으로 성장한 단괴의 성장에 따른 산화망가니즈 광물종의 변화에 대해 연구한 바 있으나, 상대적으로 천해에서 획득되는 비구형 단괴 내 광물종의 분포는 자세히 연구되지 않았다. 이에 본 연구에서는, 동시베리아해 천해(수심 약 73 m)에서 산출되는 판상의 비구형 망가니즈단괴 내 서로 다른 성장 방향에서 획득된 라만 분광분석 결과를 바탕으로 단괴 내 광물종 및 해당 광물의 구조적 특성에 대하여 면밀히 연구하였다. 또한 에너지분산형 X-선 분광분석(energy dispersive spectroscopy, EDS)을 통하여 단괴 내부 구조 및 부수광물의 존재에 대하여도 관찰을 수행하였다. 그 결과, 본 연구에서 사용한 비구형 단괴의 내부는 중심으로 부터 외곽 방향으로 크게 핵, 철 기질부, Mn-Fe 층으로 구분되었다. Mn-Fe 층 내 서로 다른 성장 방향에서 획득된 라만 분광분석 결과는 모든 방향에 대하여, 단괴 중심부로부터 외곽부로 신호 획득위치가 옮겨감에 따라 산화망가니즈 광물의 경우 터널형 광물의 비율이 감소하는 경향성을 관찰할 수 있었다. 이 때, 단괴 내 성장 방향에 따라 구성 광물의 상대적 비율 및 구조적 특성이 크게 다르다는 것이 확인되었다. 총 3가지의 실험 방향 중, 한 방향에서 획득된 라만 분광분석 결과는, 철 수산화물의 비율이 낮고, 버네사이트나 토도로카이트와 같은 산화망가니즈 광물들의 결정도가 상당히 높다는 것을 보여주었다. 반면, 나머지 두 방향에서 획득된 신호를 분석한 결과, 산화망가니즈 광물들의 결정도가 매우 낮으며 비정질 내지는 결정도가 낮은 철 수산화물들의 비율이 높다는 것이 확인되었다. 이러한 결과는 비구형 단괴가 속성 과정으로 형성되는 동안 단일 단괴 내에서도 지화학적 조건에 차이가 있었다는 것을 지시한다. 더하여, 부수광물로서 암염이 일부 층에서 관찰되는 것을 확인할 수 있었다. 이는 단괴 내 존재하던 해수의 증발로 인해 암염 결정이 형성되었음을 지시한다. 이처럼 본 연구에서는 라만 분광분석을 통해 비구형 단괴 내 광물종의 분포 및 구조적 특성에 대해 제시하였고 향후 본 연구 방법은 다양한 단괴 연구에 적용되어 지구물질의 지질학적 형성 과정에 대한 보다 세밀한 이해를 가능하게 할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 한국해양과학기술원 부설 극지연구소에서 해양수산부의 재원으로 수행하는 극지 해양환경 및 해저조사 연구사업(KIMST Grant 20210632)과 과학기술 정보통신부의재원으로 한국연구재단에서 지원하는 신진 연구 및 기초연구실 지원과제(NRF-2022R1C1C1003385 및 NRF-2022R1A4A3027001)의 지원을 받아 수행되었습니다. 본 논문의 발전을 위하여 사독을 해주신 박성준 박사님과 김창성 박사님께 깊이 감사드립니다.

References

  1. Atkins, A.L., Shaw, S. and Peacock, C.L., 2014, Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments. Geochimica et Cosmochimica Acta, 144, 109-125. https://doi.org/10.1016/j.gca.2014.08.014
  2. Baturin, G. and Dubinchuk, V., 2011, The composition of ferromanganese nodules of the Chukchi and East Siberian Seas. Doklady Earth Sciences, 440, p. 1258-1264. Springer. https://doi.org/10.1134/S1028334X11090029
  3. Bernardini, S., Bellatreccia, F., Casanova Municchia, A., Della Ventura, G. and Sodo, A., 2019, Raman spectra of natural manganese oxides. Journal of Raman Spectroscopy, 50, 873-888.
  4. Bodei, S., Manceau, A., Geoffroy, N., Baronnet, A. and Buatier, M., 2007, Formation of todorokite from vernadite in Ni-rich hemipelagic sediments. Geochimica et Cosmochimica Acta, 71, 5698-5716. https://doi.org/10.1016/j.gca.2007.07.020
  5. Burns, R.G. and Burns, V.M., 1979, Manganese oxides. In R. Burns, Ed. Marine Minerals, 6, p. 1-46. Mineralogical Society of America.
  6. Coak, M.J., Kim, Y.-H., Yi, Y.S., Son, S., Lee, S.K. and Park, J.-G., 2019, Electronic and vibrational properties of the two-dimensional Mott insulator V0.9PS3 under pressure. Physical Review B, 100, 035120.
  7. Das, S. and Hendry, M.J., 2011, Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chemical Geology, 290, 101-108. https://doi.org/10.1016/j.chemgeo.2011.09.001
  8. Dymond, J., Lyle, M., Finney, B., Piper, D.Z., Murphy, K., Conard, R. and Pisias, N., 1984, Ferromanganese nodules from MANOP Sites H, S, and R-Control of mineralogical and chemical composition by multiple accretionary processes. Geochimica et Cosmochimica Acta, 48, 931-949. https://doi.org/10.1016/0016-7037(84)90186-8
  9. Halbach, P., Friedrich, G. and von Stackelberg, U., 1988, The manganese nodule belt of the Pacific Ocean: geological environment, nodule formation, and mining aspects, F. Enke.
  10. Hein, J.R., Koschinsk, A., Bau, M., Manheim, F.T., Kang, J.-K. and Roberts, L., 2017, Cobalt-rich ferromanganese crusts in the Pacific. Handbook of marine mineral deposits, p. 239-279. Routledge.
  11. Hein, J.R. and Koschinsky, A., 2014, Deep-Ocean Ferromanganese Crusts and Nodules. In H.D. Holland, and K.K. Turekian, Eds. Treatise on Geochemistry (Second Edition), p. 273-291. Elsevier, Oxford.
  12. Hein, J.R., Koschinsky, A. and Kuhn, T., 2020, Deep-ocean polymetallic nodules as a resource for critical materials. Nature Reviews Earth & Environment, 1, 158-169. https://doi.org/10.1038/s43017-020-0027-0
  13. Hein, J.R., Mizell, K., Koschinsky, A. and Conrad, T.A., 2013, Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51, 1-14. https://doi.org/10.1016/j.oregeorev.2012.12.001
  14. Kim, E.J., Fei, Y.W. and Lee, S.K., 2016, Probing carbonbearing species and CO2 inclusions in amorphous carbon-MgSiO3 enstatite reaction products at 1.5 GPa: Insights from 13C high-resolution solid-state NMR. American Mineralogist, 101, 1113-1124. https://doi.org/10.2138/am-2016-5563
  15. Kim, H., Kim, J., Hyun, S.P. and Kwon, K.D., 2022, Toward a mechanistic understanding of cesium adsorption to todorokite: A molecular dynamics simulation study. Journal of Hazardous Materials, 436, 129250.
  16. Kim, H.-I., Cho, H. G., Lee, S., Koo, H. J., Hong, J. K. and Jin, Y. K., 2022, Spatial distribution of manganese oxide minerals in the natural ferromanganese nodule of the Arctic Sea: A view from Raman spectroscopy. in review
  17. Kim, H.N., Park, C., Park, S.Y., Kim, H. and Kim, M.S., 2019, Partial melting-induced chemical evolution in shocked crystalline and amorphous plagioclase from the lunar meteorite Mount DeWitt 12007. Journal of Geophysical Research: Planets, 124, 1852-1863. https://doi.org/10.1029/2019JE005998
  18. Knaack, D.R., Leybourne, M.I., Layton-Matthews, D., McDonald, A.M., Vuletich, A., Chipley, D., Silva, L.G. and Pufahl, P.K., 2020, Manganese nodules NOD-A-1 and NOD-P-1: Implications of pre-treatment on oxygen isotopes and mineralogy. Chemical Geology, 558, 119924.
  19. Kobayashi, T., Hirajima, T., Hiroi, Y. and Svojtka, M., 2008, Determination of SiO2 Raman spectrum indicating the transformation from coesite to quartz in Gfohl migmatitic gneisses in the Moldanubian Zone, Czech Republic. Journal of Mineralogical and Petrological Sciences, 103, 105-111. https://doi.org/10.2465/jmps.071020
  20. Koo, H., Park, M., Seo, C. and Cho, H., 2021, Characteristics of non-spherical manganese nodule from the East Siberian Sea. Korean Journal of Mineralogy and Petrology, 34, 241-253. https://doi.org/10.22807/KJMP.2021.34.4.241
  21. Koo, H.J., Cho, H.G., Yoo, C.M. and Jin, Y.K., 2017, Characteristics of Manganese Nodule from the East Siberian Sea. Journal of the mineralogical society of korea, 30, 219-227. https://doi.org/10.9727/jmsk.2017.30.4.219
  22. Koschinsky, A., Bau, M., Marbler, H. and Schmidt, K., 2010, Rare valuable metals in marine ferromanganese nodules-contents and accumulation processes. Zeitschrift fur angewandte Geologie, 51, 33-39.
  23. Koschinsky, A. and Halbach, P., 1995, Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochimica et Cosmochimica Acta, 59, 5113-5132. https://doi.org/10.1016/0016-7037(95)00358-4
  24. Kuhn, T., Versteegh, G., Villinger, H., Dohrmann, I., Heller, C., Koschinsky, A., Kaul, N., Ritter, S., Wegorzewski, A. and Kasten, S., 2017, Widespread seawater circulation in 18-22 Ma oceanic crust: Impact on heat flow and sediment geochemistry. Geology, 45, 799-802. https://doi.org/10.1130/g39091.1
  25. Kwon, K.D., Refson, K. and Sposito, G., 2013, Understanding the trends in transition metal sorption by vacancy sites in birnessite. Geochimica et Cosmochimica Acta, 101, 222-232. https://doi.org/10.1016/j.gca.2012.08.038
  26. Lee, S.K., Lin, J.F., Cai, Y.Q., Hiraoka, N., Eng, P.J., Okuchi, T., Mao, H.K., Meng, Y., Hu, M.Y., Chow, P., Shu, J., Li, B., Fukui, H., Lee, B.H., Kim, H.N. and Yoo, C.S., 2008, X-ray Raman scattering study of MgSiO3 glass at high pressure: implication for triclustered MgSiO3 melt in Earth's mantle. Proceedings of the National Academy of Sciences of the United States of America, 105, 7925-9. https://doi.org/10.1073/pnas.0802667105
  27. Liao, J., Sun, X., Wu, Z., Sa, R., Guan, Y., Lu, Y., Li, D., Liu, Y., Deng, Y. and Pan, Y., 2019, Fe-Mn (oxyhydr)oxides as an indicator of REY enrichment in deep-sea sediments from the central North Pacific. Ore Geology Reviews, 112, 103044.
  28. Ling, F.T., Post, J.E., Heaney, P.J. and Ilton, E.S., 2018, The relationship between Mn oxidation state and structure in triclinic and hexagonal birnessites. Chemical Geology, 479, 216-227. https://doi.org/10.1016/j.chemgeo.2018.01.011
  29. Ling, F.T., Post, J.E., Heaney, P.J., Santelli, C.M., Ilton, E.S., Burgos, W.D. and Rose, A.W., 2020, A multi-method characterization of natural terrestrial birnessites. American Mineralogist, 105, 833-847. https://doi.org/10.2138/am-2020-7303
  30. Lopano, C.L., Heaney, P.J., Post, J.E., Hanson, J. and Komarneni, S., 2007, Time-resolved structural analysis of K-and Baexchange reactions with synthetic Na-birnessite using synchrotron X-ray diffraction. American Mineralogist, 92, 380-387. https://doi.org/10.2138/am.2007.2242
  31. Manceau, A., Lanson, M. and Takahashi, Y., 2014, Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule. American Mineralogist, 99, 2068-2083. https://doi.org/10.2138/am-2014-4742
  32. Mazzetti, L. and Thistlethwaite, P., 2002, Raman spectra and thermal transformations of ferrihydrite and schwertmannite. Journal of Raman Spectroscopy, 33, 104-111. https://doi.org/10.1002/jrs.830
  33. Oda, H., Nakasato, Y. and Usui, A., 2018. Characterization of marine ferromanganese crust from the Pacific using residues of selective chemical leaching: Identification of fossil magnetotactic bacteria with FE-SEM and rock magnetic methods. Earth, Planets and Space, 70, 165.
  34. Peacock, C.L. and Sherman, D.M., 2007, Crystal-chemistry of Ni in marine ferromanganese crusts and nodules. American Mineralogist, 92, 1087-1092. https://doi.org/10.2138/am.2007.2378
  35. Post, J.E., 1999, Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences, 96, 3447-3454. https://doi.org/10.1073/pnas.96.7.3447
  36. Post, J.E., McKeown, D.A. and Heaney, P.J., 2020, Raman spectroscopy study of manganese oxides: Tunnel structures. American Mineralogist, 105, 1175-1190. https://doi.org/10.2138/am-2020-7390
  37. Post, J.E., McKeown, D.A. and Heaney, P.J., 2021, Raman spectroscopy study of manganese oxides: Layer structures. American Mineralogist, 106, 351-366. https://doi.org/10.2138/am-2021-7666
  38. Tebo, B.M., Clement, B., Dick, G., Murray, K., Parker, D., Verity, R., Bargar, J. and Webb, S.M., 2004, Biogenic manganese oxides: properties and mechanisms of formation.
  39. Usui, A. and Mita, N., 1995, Geochemistry and mineralogy of a modern buserite deposit from a hot spring in Hokkaido, Japan. Clays and Clay Minerals, 43, 116-127. https://doi.org/10.1346/CCMN.1995.0430114
  40. Usui, A., Nishi, K., Sato, H., Nakasato, Y., Thornton, B., Kashiwabara, T., Tokumaru, A., Sakaguchi, A., Yamaoka, K., Kato, S., Nitahara, S., Suzuki, K., Iijima, K. and Urabe, T., 2017, Continuous growth of hydrogenetic ferromanganese crusts since 17Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800-5500 m. Ore Geology Reviews, 87, 71-87. https://doi.org/10.1016/j.oregeorev.2016.09.032
  41. Vereshchagin, O.S., Perova, E.N., Brusnitsyn, A.I., Ershova, V.B., Khudoley, A.K., Shilovskikh, V.V. and Molchanova, E.V., 2019, Ferro-manganese nodules from the Kara Sea: Mineralogy, geochemistry and genesis. Ore Geology Reviews, 106, 192-204. https://doi.org/10.1016/j.oregeorev.2019.01.023
  42. Wegorzewski, A.V., Grangeon, S., Webb, S.M., Heller, C. and Kuhn, T., 2020, Mineralogical transformations in polymetallic nodules and the change of Ni, Cu and Co crystalchemistry upon burial in sediments. Geochimica et Cosmochimica Acta, 282, 19-37. https://doi.org/10.1016/j.gca.2020.04.012
  43. Wegorzewski, A.V. and Kuhn, T., 2014, The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean. Marine Geology, 357, 123-138. https://doi.org/10.1016/j.margeo.2014.07.004
  44. Wegorzewski, A.V., Kuhn, T., Dohrmann, R., Wirth, R. and Grangeon, S., 2015, Mineralogical characterization of individual growth structures of Mn-nodules with different Ni+Cu content from the central Pacific Ocean. American Mineralogist, 100, 2497-2508. https://doi.org/10.2138/am-2015-5122