• Title/Summary/Keyword: Element analysis

Search Result 22,369, Processing Time 0.046 seconds

Nonlinear finite element analysis on the pullout behavior of the mechanical anchorage of reinforcement in concrete (기계적 정착된 철근의 인발거동에 대한 비선형 유한요소 해석)

  • 천성철;이성호;오보환;박형철;나환선;김상구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.132-135
    • /
    • 2003
  • Mechanical anchorage can substitute a standard hook. To enhance the workability and economical benefit of mechanical anchorage, the size of anchor plate should be optimized. In this paper, the pull-out behaviors such as strength, failure mode, and crack patterns of mechanically anchored reinforcement in concrete are investigated using nonlinear finite element analysis. The nonlinear finite element analysis results are consistent with the experimental results. These results show that the optimal anchor plates can be designed using the nonlinear finite element analysis.

  • PDF

Finite Element Analysis of the Extrusion Process for an Automobile Bumper (자동차용 범퍼 압출 공정의 유한요소해석)

  • Kim, Kwang-Heui;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • The development of an aluminum bumper is required in order to reduce the weight of the automobile. An porthole die extrusion process is simulated by the finite element method in order to develop the aluminum bumper which is manufactured by hollow section extrusion. The general-purpose finite element analysis software is used. The developed analysis method can be applied to the optimization of the porthole die extrusion process for the aluminum bumper.

  • PDF

Finite Element Analysis of the Stress Concentrations for Butt Welded Joints (유한요소 해석에 의한 맞대기 용접 이음의 응력집중에 과한 연구)

  • 구병춘;최병일;김재훈
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.59-64
    • /
    • 2004
  • The purpose of this study is to investigate the influence of weld bead profiles on stress concentration factors of double V groove butt-welded joints. The influence of three parameters such as toe radii, flank angles and bead heights on the stress concentration factors is studied by finite element analysis. It is shown that the three parameters have similar effects on the stress concentration factors. Finally a formula to estimate the stress concentration factors considering the three parameters and others is proposed and estimated results are compared with the results obtained by finite element analysis.

Boundary stress resolution and its application to adaptive finite element analysis

  • Deng, Jianhui;Zheng, Hong;Ge, Xiurun
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.115-124
    • /
    • 1998
  • A novel boundary stress resolution method is suggested in this paper, which is based upon the displacements of finite element analysis and of high precision with stress boundary condition strictly satisfied. The method is used to modify the Zienkiewicz-Zhu ($Z^2$) a posteriori error estimator and for the h-version adaptive finite element analysis of crack problems. Successful results are obtained.

An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.199-215
    • /
    • 2005
  • An assumed stress quadrilateral thin/moderately thick plate element HQP4 based on the Mindlin/Reissner plate theory is proposed. The formulation is based on Hellinger-Reissner variational principle. Static and free vibration analyses of plates are carried out. Numerical examples are presented to show that the validity and efficiency of the present element for static and free vibration analysis of plates. Satisfactory accuracy for thin and moderately thick plates is obtained and it is free from shear locking for thin plate analysis.

ANALYSIS OF THE FIT IN THE IMPLANT PROSTHESIS USING A LASER DISPLACEMENT METER AND THREE-DIMENSIONAL FINITE ELEMENT METHOD

  • Kwon Ho-Beom;Kim Yung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.611-624
    • /
    • 2001
  • A precise fit of the implant prosthesis is one of the most important factors in preventing mechanical complications. To analyze the degree of the misfit of implant prosthesis, a modal testing experiment was accomplished. And. to interpret the modal testing analysis mathematically, three-dimensional finite element models were established. In the experimental modal testing analysis, with a laser displacement meter, FFT analyzer, impact hammer, etc., natural frequencies of the models with various degree of prosthesis fit were determined after the frequency response function were calculated. In the finite element analysis, the natural frequencies and mode shapes of the models which simulated those of experimental modal testing were computed. The results were as follows: 1. Natural frequencies of the prosthesis-abutment were related to the contact state between components. 2. In the modal testing experiment, the natural frequencies increased from $50{\mu}m$ to $200{\mu}m$ gap and reached a plateau. 3. In the finite element analysis, the natural frequencies decreased gradually according to the in crease of the gap size. 4. In the finite element analysis, the mode shapes of model 1 with misfitting prosthesis showed different patterns from those without misfitting prosthesis. 5. The devices including a laser displacement meter used in this study were useful for measuring the natural frequencies of an implant prosthesis which had various degrees of fit.

  • PDF

Feasibility Study on Similarity Principle in Discrete Element Analysis (이산요소법을 이용한 수치해석에서의 상사성 이론의 적용성 검토)

  • Yun, Taeyoung;Park, Hee Mun
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.51-60
    • /
    • 2016
  • PURPOSES : The applicability of the mechanics-based similarity concept (suggested by Feng et al.) for determining scaled variables, including length and load, via laboratory-scale tests and discrete element analysis, was evaluated. METHODS: Several studies on the similarity concept were reviewed. The exact scaling approach, a similarity concept described by Feng, was applied in order to determine an analytical solution of a free-falling ball. This solution can be considered one of the simplest conditions for discrete element analysis. RESULTS : The results revealed that 1) the exact scaling approach can be used to determine the scale of variables in laboratory tests and numerical analysis, 2) applying only a scale factor, via the exact scaling approach, is inadequate for the error-free replacement of small particles by large ones during discrete element analysis, 3) the level of continuity of flowable materials such as SCC and cement mortar seems to be an important criterion for evaluating the applicability of the similarity concept, and 4) additional conditions, such as the kinetics of particle, contact model, and geometry, must be taken into consideration to achieve the maximum radius of replacement particles during discrete element analysis. CONCLUSIONS : The concept of similarity is a convenient tool to evaluate the correspondence of scaled laboratory test or numerical analysis to physical condition. However, to achieve excellent correspondence, additional factors, such as the kinetics of particles, contact model, and geometry, must be taken into consideration.

Preliminary Study on Effect of Baseline Correction in Acceleration Excitation Method on Finite Element Elastic-Plastic Time-History Seismic Analysis Results of Nuclear Safety Class I Components (원전 안전 1등급 기기의 유한요소 탄소성 시간이력 지진해석 결과에 미치는 가속도 가진 방법 내 기준선 조정의 영향에 대한 예비연구)

  • Kim, Jong-Sung;Park, Sang-Hyeok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.69-76
    • /
    • 2018
  • The paper presents preliminary investigation results for the effect of the baseline correction in the acceleration excitation method on finite element seismic analysis results (such as accumulated equivalent plastic strain, equivalent plastic strain considering cyclic plasticity, von Mises effective stress, etc) of nuclear safety Class I components. For investigation, finite element elastic-plastic time-history seismic analysis is performed for a surge line including a pressurizer lower head, a pressurizer surge nozzle, a surge piping, and a hot leg surge nozzle using the Chaboche hardening model. Analysis is performed for various seismic loading methods such as acceleration excitation methods with and without the baseline correction, and a displacement excitation method. Comparing finite element analysis results, the effect of the baseline correction is investigated. As a result of the investigation, it is identified that finite element analysis results using the three methods do not show significant difference.

Improved stress recovery for elements at boundaries

  • Stephen, D.B.;Steven, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 1997
  • Patch recovery attempts to derive a more accurate stress filed over a particular element than the finite element shape function used for that particular element. Elements that have a free edge being the boundary to the structure have particular stress relationship that can be incorporated to the stress field to improve the accuracy of the approximation.

Analysis of plane frame structure using base force element method

  • Peng, Yijiang;Bai, Yaqiong;Guo, Qing
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.