Browse > Article
http://dx.doi.org/10.12989/sem.2017.62.1.011

Analysis of plane frame structure using base force element method  

Peng, Yijiang (Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology)
Bai, Yaqiong (Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology)
Guo, Qing (Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology)
Publication Information
Structural Engineering and Mechanics / v.62, no.1, 2017 , pp. 11-20 More about this Journal
Abstract
The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.
Keywords
base force element method; complementary energy principle; plane frame; aspect ratio; finite element method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Long, Z.F., Cen, S., Wang, L., Fu, X.R. and Long, Y.Q. (2010), "The third form of the quadrilateral area coordinate method (QACM-III): theory, application, and scheme of composite coordinate interpolation", Finite Elem. Anal. Des., 46(10), 805-818.   DOI
2 Long, Z.F., Li, J.X., Cen, S. and Long, Y.Q. (1999), "Some basic formulae for area coordinates used in quadrilateral elements", Commun. Numer. Meth. Eng., 15(12), 841-852.   DOI
3 Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150.   DOI
4 Patnaik, S.N. (1973), "An integrated force method for discrete analysis", Int. J. Numer. Meth. Eng., 6(2), 237-251.   DOI
5 Patnaik, S.N. (1986), "The integrated force method versus thestandard force method", Comput. Struct., 22(2), 151-163.   DOI
6 Patnaik, S.N. (1986), "The variational energy formulation for the integrated force method", AIAA J., 24(1), 129-136.   DOI
7 Patnaik, S.N., Berke, L. and Gallagher, R.H. (1991), "Integrated force method versus displacement method for finite element analysis", Comput. Struct., 38(4), 377-407.   DOI
8 Peng, Y.J. and Liu, Y.H. (2009), "Base force element method (BFEM) of complementary energy principle for large rotation problems". Acta Mechanica Sinica, 25(4), 507-515.   DOI
9 Peng, Y.J., Dong, Z.L., Peng, B. and Liu, Y.H. (2011), "Base force element method(BFEM) on potential energy principle for elasticity problems", Int. J. Mech. Mech. Des., 7(3), 245-251.   DOI
10 Peng, Y.J., Guo, Q., Zhang, Z.F. and Shan, Y.Y. (2015), "Application of base force element method on complement energy principle to rock mechanics problems", Math. Prob. Eng., 25(4), 1-16.
11 Peng, Y.J., Zhang, L.J., Pu, J.W. and Guo, Q. (2014), "A two-dimensional base force element method using concave polygonal mesh", Eng. Anal. Bound. Elem., 42, 45-50.   DOI
12 Rajendran, S. and Liew, K.M. (2003), "A novel unsymmetric 8node plane element immune to mesh distortion under a quadratic displacement field", Int. J. Numer. Meth. Eng., 58(11), 1713-1748.   DOI
13 Peng, Y.J., Zong, N.N., Zhang, L.J. and Pu, J.W. (2014), "Application of 2D base force element method with complementary energy principle for arbitrary meshes", Eng. Comput., 31(4), 1-15.
14 Pian, T.H.H. (1964),"Derivation of element stiffness matrices by assumed stress distributions", AIAA J., 2(7), 1333-1336.   DOI
15 Pian, T.H.H. and Chen, D.P. (1982), "Alternative ways for formulation of hybrid stress elements", Int. J. Numer. Meth. Eng., 18(11), 1679-1684.   DOI
16 Pian, T.H.H. and Sumihara, K. (1984), "Rational approach for assumed stress finite elements", Int. J. Numer. Meth. Eng., 20(9), 1685-1695.   DOI
17 Piltner, R. and Taylor, R.L. (1995), "A quadrilateral mixed finite element with two enhanced strain modes" Int. J. Numer. Meth. Eng., 38(11), 1783-1808.   DOI
18 Santos, H.A.F.A. and Paulo, C.A. (2011), "On a pure complementary energy principle and a force-based finite element formulation for nonlinear elastic cables", Int. J. Nonlin. Mech., 46(2), 395-406.   DOI
19 Santos, H.A.F.A. (2011), "Complementary-energy methods for geometrically non-linear structural models: an overview and recent developments in the analysis of frames", Arch. Comput. Meth. Eng., 18(4), 405-440.   DOI
20 Santos, H.A.F.A. (2015), "A novel updated Lagrangian complementary energy-based formulation for the elastica problem: force-based finite element model", Acta Mechanica, 226(4), 1133-1151.   DOI
21 Santos, H.A.F.A. and Moitinho de Almeida, J.P. (2010), "Equilibrium-based finite element formulation for the geometrically exact analysis of planar framed structures", J. Eng. Mech., 136(12), 1474-1490.   DOI
22 Cen, S., Fu, X.R. and Zhou, M.J.(2011), "8- and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes", Comput. Meth. Appl. Mech. Eng., 200(29-32), 2321-2336.   DOI
23 De Veubeke, B.F. (1965), "Displacementand equilibrium models in the finite element method", Stress Anal., 9, 145-197.
24 Santos, H.A.F.A. and Moitinho de Almeida, J.P. (2014), "A family of Piola-Kirchhoff hybrid stress finite elements for two-dimensional linear elasticity", Finite Elem. Anal. Des., 85, 33-49.   DOI
25 Cen, S., Fu, X.R., Zhou, G.H., Zhou, M.J. and Li, C.F. (2011), "Shape-free finite element method: The plane Hybrid Stress-Function (HS-F) element method for anisotropic materials", Sci. China Phys. Mech. Astron., 54(4), 653-665.   DOI
26 Cen, S., Zhou, M.J. and Fu, X.R. (2011), "A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions", Comput. Struct., 89(5-6), 517-528.   DOI
27 Chen, J., Li, C.J. and Chen, W.J. (2010), "A family of spline finite elements", Comput. Struct., 88(11-12), 718-727.   DOI
28 Darilmaz, K. (2005), "An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates", Struct. Eng. Mech., 19(2), 199-215.   DOI
29 Tang, L.M., Chen, W.J. and Liu, Y.G. (1984), "Formulation of quasi-conforming element and Hu-Washizu principle", Comput. Struct., 19(1-2), 247-250.   DOI
30 Simo J.C. and Hughes, T.J.R. (1986), "On the variational foundations of assumed strain methods", J. Appl. Mech., 53(1), 51-54.   DOI
31 Wilson E.L., Tayler R.L., Doherty W.P. and Ghaboussi J.(1973), Incompatible Displacement Models, Numerical and Computational Methods in Structural Mechanics, Eds. Fenves, S.J. et al., Academic Press, New York.
32 Zhang, C.H., Wang, D.D., Zhang, J.L., Feng, W. and Huang, Q. (2007), "On the equivalence of various hybrid finite elements and a new orthogonalization method for explicit element stiffness formulation", Finite Elem. Anal. Des., 43(4), 321-332.   DOI
33 Zienkiewicz, R.L. and Taylorand, O.C. (1979), "Complementary energy with penalty functions in finite element analysis", Energy Methods in Finite Element Analysis, (A 79-53076 24-39), Chichester, Sussex, England, Wiley-Interscience.
34 de Veubeke, B.F. (1972), "A new variational principle for finite elastic displacements", Int. J. Eng. Sci., 10(9), 745-763.   DOI
35 Fu, X.R., Cen, S., Li, C.F. And Chen, X.M. (2010), "Analytical trial function method for development of new 8-node plane element based on the variational principle containing airy stress function", Eng. Comput., 27(4), 442-463.   DOI
36 Gao, Y.C. (2003), "A new description of the stress state at a point with applications", Arch. Appl. Mech., 73(3-4), 171-183.   DOI
37 Hughes, T.J.R. (1980), "Generalization of selective integration procedures to anisotropic and nonlinear media", Int. J. Numer. Meth. Eng., 15(9), 1413-1418.   DOI
38 Liu, G.R., Dai, K.Y. and Nguyen, T.T. (2007), "A smoothed finite element method for mechanics problems", Comput. Mech., 39(6), 859-877.   DOI
39 Liu, Y.H., Peng, Y.J., Zhang, L.J. and Guo, Q. (2013), "A 4-mode-node plane model of base force element method on complement energy principle", Math. Prob. Eng., 2013, 1-8.
40 Liu, G.R., Nguyen-Thoi, T. and Lam, K.Y. (2008), "A novel alpha finite element method (${\alpha}FEM$) for exact solution to mechanics problems using triangular and tetrahedral elements", Comput. Meth. Appl. Mech. Eng., 197(45-48), 3883-3897.   DOI
41 Long, Y.Q. and Huang, M.F. (1988), "A generalized conforming isoparametric element", Appl. Math. Mech., 9(10), 929-936.   DOI
42 Long, Y.Q., Cen, S. and Long, Z.F. (2009), Advanced Finite Element Method in Structural Engineering, Springer-Verlag GmbH/Tsinghua University Press, Berlin, Heidelberg/Beijing.
43 Long, Y.Q., Li, J.X., Long, Z.F. and Cen, S. (1999), "Area coordinates used in quadrilateral elements", Commun. Numer. Meth. Eng., 15(8), 533-545.   DOI