Proceedings of the Computational Structural Engineering Institute Conference
/
2001.10a
/
pp.11-18
/
2001
In this paper, a new algorithm of coupling Element-Free Galerkin Method(EFGM) and Boundary Element Method(BEM) using the variational formulation is presented. A global variational coupling formulation of EFGM-BEM is achieved by combining the variational form on each subregion. In the formulation, Lagrange multiplier method is introduced to satisfy the compatibility conditions between EFGM subregion and BEM subregion. Some numerical examples are studied to verify accuracy and efficiency of the proposed method, in which numerical performance of the method is compared with that of conventional method such as EFGM-BEM direct coupling method, EFGM and BEM. The proposed method incorporating the merits of EFGM and BEM is expected to be applied to special engineering problems such as the crack propogation problems in very large domain, and underground structures with joints.
This paper presents a topology optimization approach using element-free Galerkin method (EFGM) for the optimal design of compliant mechanisms with geometrically non-linearity. Meshless method has an advantage over the finite element method(FEM) because it is more capable of handling large deformation resulted from geometrical nonlinearity. Therefore, in this paper, EFGM is employed to discretize the governing equations and the bulk density field. The sensitivity analysis of the optimization problem is performed by incorporating the adjoint approach with the meshless method. The Lagrange multipliers method adjusted for imposition of both the concentrated and continuous essential boundary conditions in the EFGM is proposed in details. The optimization mathematical formulation is developed to convert the multi-criteria problem to an equivalent single-objective problem. The popularly applied interpolation scheme, solid isotropic material with penalization (SIMP), is used to indicate the dependence of material property upon on pseudo densities discretized to the integration points. A well studied numerical example has been applied to demonstrate the proposed approach works very well and the non-linear EFGM can obtain the better topologies than the linear EFGM to design large-displacement compliant mechanisms.
Proceedings of the Computational Structural Engineering Institute Conference
/
2002.10a
/
pp.575-582
/
2002
A new coupling method of Element-Free Galerkin Method(EFGM) and Boundary Element Method(BEM) using the domain decomposition method is presented in this paper. This proposed methodology is that the problem domain is decomposed into sub-domains being modeled by the EFGM and BEM respectively and the respective EFGM and BEM domains share a partially overlapped region over an entire domain. Then, the each sub-domain is separately computed and the variables on common region are iteratively updated until converging. It is an important note that in the developed coupling method, there is no need to combine the coefficient matrices of EFGM and BEM sub-domains, in contrast with the other conventional coupling methods. In the first part of this paper, a theory of EFGM and BEM is summarized, and then a brief introduction of domain decomposition method is described. Then, a new coupling method is presented. Also, patch test and Some numerical examples are studied to verify stability, accuracy and efficiency of the proposed method, in which numerical performance of the method is compared with that of conventional method such as EFGM-BEM variational coupling method, EFGM and BEM.
Journal of the Computational Structural Engineering Institute of Korea
/
v.14
no.4
/
pp.525-535
/
2001
In this paper, a new adaptive analysis scheme for element-free Galerkin method(EFGM) is proposed. The novel point of this scheme is that the triangular cell structure based on the Delaunay triangulation is used in the numerical integration and the node adding/removing process. In adaptive analysis with this scheme, there is no need to divide the integration cell and the memory cell structure. For the adaptive analysis of crack propagation, the reconstruction of cell structure by adding and removing the nodes on integration cells based the estimated error should be carried out at every iteration step by the Delaunay triangulation technique. This feature provides more convenient user interface that is closer to the real mesh-free nature of EFGM. The analysis error is obtained basically by calculating the difference between the values of the projected stresses and the original EFG stresses. To evaluate the performance of proposed adaptive procedure, the crack propagation behavior is investigated for several examples.
Kanok-Nukulchai, W.;Barry, W.J.;Saran-Yasoontorn, K.
Structural Engineering and Mechanics
/
v.11
no.2
/
pp.123-132
/
2001
An improved version of the Element-free Galerkin method (EFGM) is presented here for addressing the problem of transverse shear locking in shear-deformable beams with a high length over thickness ratio. Based upon Timoshenko's theory of thick beams, it has been recognized that shear locking will be completely eliminated if the rotation field is constructed to match the field of slope, given by the first derivative of displacement. This criterion is applied directly to the most commonly implemented version of EFGM. However in the numerical process to integrate strain energy, the second derivative of the standard Moving Least Square (MLS) shape functions must be evaluated, thus requiring at least a $C^1$ continuity of MLS shape functions instead of $C^0$ continuity in the conventional EFGM. Yet this hindrance is overcome effortlessly by only using at least a $C^1$ weight function. One-dimensional quartic spline weight function with $C^2$ continuity is therefore adopted for this purpose. Various numerical results in this work indicate that the modified version of the EFGM does not exhibit transverse shear locking, reduces stress oscillations, produces fast convergence, and provides a surprisingly high degree of accuracy even with coarse domain discretizations.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.1
no.1
/
pp.1-34
/
1997
In this study, various available meshless methods are briefly reviewed and the connection among them is investigated. The objective of meshless methods is to eliminate some difficulties which are originated from reliance on a mesh by constructing the approximation entirely in terms of nodes. Especially, focusing on Element Free Galerkin Method(EFGM) based on moving least square interpolants(MLSI), a new implementation is developed based on a variational principle with penalty function method were used to enforce the essential boundary condition. In addition, the weighted orthogonal basis functions are constructed to overcome disadvantage of MLSI.
In this work, a new penalty formulation is proposed for the analysis of Mindlin-Reissner plates by using the element-free Galerkin method. A penalized weak form for the Mindlin-Reissner Plates is constructed through the exterior penalty method to enforce the essential boundary conditions of rotations as well as transverse displacements. In the numerical examples, some typical problems of Mindlin-Reissner plates are analyzed, and parametric studies on the order of integration and the size of influence domain are also carried out. The effect of the types of background cells on the accuracy of numerical solutions is observed and a proper type of background cell for obtaining optimal accuracy is suggested. Further, optimal order of integration and basis order of Moving Least Squares approximation are suggested to efficiently handle the irregularly distributed nodes through the triangular type of background cells. From the numerical tests, it is identified that unlike the finite element method, the proposed element-free Galerkin method with penalty technique gives highly accurate solution without shear locking in dealing with Mindlin-Reissner plates.
Transactions of the Korean Society of Mechanical Engineers A
/
v.24
no.3
s.174
/
pp.803-809
/
2000
For the effective analysis of an engineering problem, meshless methods which require only positioning finite points without the element meshing recently have been proposed and being studied extensively. Meshless methods have difficulty in imposing essential boundary conditions directly, because non-interpolate shape functions originated from an approximation process are used. So some techniques, which are Lagrange multiplier method, modified variational principles and coupling with finite elements and so on, were introduced in order to impose essential boundary conditions. In spite of these methods, imposition of essential boundary conditions have still many problems like as non-positive definiteness, inaccuracy and negation of meshless characteristics. In this paper, we propose a new method which modifies shape function. Through numerical tests, convergence, accuracy and validity of this method are compared with the standard EFGM which uses Lagrange multiplier method or modified variational principles. According to this study, the proposed method shows the comparable accuracy and efficiency.
특이 가중함수로 표현된 shepard interpolant와 일관조건을 사용하여 무요소법 형성함수를 도출하였다. 따라서 통상의 EFGM(Element Free Galerkin Method)과는 달리 변위로 주어지는 경계조건을 자연스럽게 부과할 수 있다. 수치계산 예로서 외팔보 문제를 다루었는데 보이론과 비교하여 매우 잘 맞는 결과를 보여주고, 유한요소법과의 결합도 자연스럽게 이루어짐을 보인다. 또 penny-shaped 균열을 다루는데, 응력확대계수는 균열 표면의 변위로부처 직접 계산하여 해석해와 비교한다.
Journal of the Computational Structural Engineering Institute of Korea
/
v.12
no.1
/
pp.47-56
/
1999
최근 요소망의 구성없이 공학적인 문제의 해석이 가능한 무요소법이 많은 학자들에 의하여 제안되고 이에 관한 집중적인 연구가 이루어지고 있다. 본 연구에서는 갤러킨 정식화에 의한 무요소법을 고체역학적인 문제에 적용하여 이의 특성을 규명하고자 하였다. 특히 일반적으로 사용되고 있는 몇가지 가중 함수를 선정하여 이들이 해석결과에 미치는 특성과 절점 배치방법 및 가중 함수의 영향 영역 변화에 따른 해의 정확도 등을 서로 비교하고 검토하였다. 연구결과로 가중 함수의 형태와 영향 영역의 크기, 기정 함수의 차수와 절점 배치방법 등은 서로 상관관계를 갖고 해의 정확도에 크게 영향을 미침을 확인할 수 있었고 이의 적절한 선정은 무요소해석의 중요한 요건임을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.