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A Shape Function for the Mesh-Free Method Using Singular
Weighting Function and Three-Dimensional Applications
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1. Introduction

The elegance of the finite element method
gives it considerable appeal, for example, from
the standpoint of simplicity, local approach,
etc.,

powerful tools. However, one of its drawbacks is

variational foundation, robustness, as a
the difficulty of meshing complicated bodies.
This requires new methodology for relaxing the
strict requirement on the element definition of FEM

Recently, promising methods, which are refered

x 2234, AF7VAATFY FRALGLA TR

to as mesh-free methods, have been reported.
Mesh-free methods have some advantages over
FEM. Of these, the dominant superiority is that
mesh-free methods, as the name implies, do not
require defined elements. Because of this, they
have potential  especially the
computational fracture mechanics because it is
not an easy task for both analysts and
programmers to mesh cracked bodies. This work
was actually motivated by the need for the
auto-modelling of cracked bodies.

great in
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Mesh—-free methods have been formulated with
shape functions from different sources, for
example, Smooth Particle Hydrodynamic (SPH),
Moving Least-Squares Method(MLS), Partition

the data points exactly. The non-interpolation
nature of shape function causes difficulties in
To
remedy the problem, Belytschko relied on a

imposing essential boundary conditions.

— . . IRTIN: ) . - 9)
Unity Method(PUM). But they can be-unified im—-agrange multiplier~and—coupling with FEM

PUM, in fact, SPH and MLS are special cases
of PUM. These formulations have been well
reviewed in detail by Belytschko et al?.
Initially, mesh-free method
conjunction with SPH. Independently NayroleSZ)

appeared in
developed the diffuse element method(a type of
mesh-free method) using least square fitting and
Galerkin formulation. Later, Belytschko et ar®
improved it further and found that the diffuse
element method is connected to the moving
least-squares method which was developed to fit
large scattered data, as reported, for example, by
Lancaster and Salkauskas®. Belytschko et a®
were the first to use the name "Element Free
Galerkin Method(EFGM)" (hereafter MFGM is uesd
rather than EFGM). PUM appeared some time ago,
and has received considerable attention recently,
Franke and Nielson” Renkaﬁ), Babuska et al.”.

the by
Be]ytschkoa) appeared, many publications on

Since studies Nayrolesg) and
MFGM and its applications have been reported,
Lu al®
Belytschko et al? for coupling with the finite
element method, Krysl and Belytschkom) for thin

plate analysis, Belytschko et al'’ for dynamic

see et for new implementation,

fracture problems, Fleming et al'® for enriching
the crack tip displacement field on MFGM. Krysl
et al"™¥ discussed convergence of shape function.
Belytschko et al'¥ applied MFGM to three-
dimensional fluid problem. Additional studies and
applications are required, however,
MFGM as robust a tool as FEM.
Most MFGM studies above are based on MLS
in conjunction with nonsingular weight function.

to make

The shape function from MLS with nonsingular
true
interpolation because it does not pass through

weight function does not constitute

However, these did not appear to be entirely

satisfactory in terms of computation and
formulation respectively. However coupling with
FEM can be a very useful trick for improving
computational efficiency.

On the other hand Lancaster and Salkauskas”
showed in surface fitting that a singular weight
function gives an interpolation nature to MLS.
Using this approach, Kaljevic and Saigalm
formulated MFGM with no difficulty to impose
essential boundary conditions.

In this paper a shape function having an
interpolation nature is carved from a Shepard
interpolant The
Shepard interpolant of a singular weighting

function can not be used as the shape function

and consistency condition.

for the problems which require C' or more.
Hence, the present shape function is modified
via consistency condition. The resulting shape
function appears identical to that of MLS, when
MLS employs the Shepard interpolant as the
weight function. Kaljevic and Saiga]m) derived
another descriptions to treat singularity which aries
when integration points coincide with data points.
The present shape function removes the singularity
without additional algebraic manipulations.

On the other hand, three-dimensional appli-
cations of MFGM is less frequént than two
dimensional cases. The present shape function is
One
example for curve fitting, two examples for

applied to three-dimensional problems.

cantilever bending are provided in this paper.
One example of cantilever bending shows that
coupling with FEM can be made naturally
without additional efforts. Finally, a penny-
shaped crack immersed in a cube is solved using
coupled modelling of MFGM and FEM. The
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mode [ stress intensity factors are evaluated
directly from crack surface displacements and
compared with analytical values.

2. Short Review for MFGM
Formulation of MLS

Let a domain £, a set of data points in the
domain S={p'| i€A} where A is a set of
integers. And a function #(x) are known at S.
An approximation #°(x) is used to approximate

u(x) at arbitrary points of £ . Here a bold x
the components of
which are denoted by (x,y,z). Through this
paper
a base,

indicates a space variable,

"m"” is used to indicate the dimension of

"o

n the number of data. points

considered and superscripts data points unless
special comments.

Let the approximation be:

u(x)=q"(2) (%) )

where ¢ is a complete base and c(x) a one

column coefficient matrix for the base.

¢(x) can be obtained by
minimizing a weighted norm:

The coefficient

I= 3} wix, Hu'= a7« D)’ 2)

where w(x, xi) is a weighting function. 'After

some algebraic manipulations <(x) can be

expressed Eq.(3).
dx)=A"'BU 3
where the matrix A, B and U are defined by
A= (0@ )
wi(2) =w(x, %)
Q=14( xY¢7( 2)): mxm matrix
(5)

B=[w'q(x"), - -, w"a(x)]: mxn

U= [u( x)]:
elements.

one column matrix of n
The shape function is derived by combining

c(x) and the base as bellow.

#x)=¢"A'B ®)

The weight function should be differentiable as
many time as required. The exponential function
is frequently used.
2k - o2t
o @, <-1:/>
1 —e - (!1..‘/ ©)
i it i

wi(d‘-zk)z

,d'<d,,; (D

where d' is the distance from z to x', d.; the
radius of influence domain, & an integer and ¢

{the denominator of d' and d,) a constant

controlling the relative weight.

3. A New Shape Function

Using the shape function Eq.(6) to impose
essential boundary conditions is a problem
because it is not a true interpolation. Belytschkoa)
has proposed the use of Lagrange multiplier to

remedy the problem as is shown below.
T —
fga(vsv%dg— fg&v bd2— fn&) tdrr
T g Ty g
—fna,i (u—wdl fn&) Adr=0

Véve !, e ® 8

where v is a test function and A Lagrange
multiplier.

The above strategy will bring about additional
degrees of freedom at the nodes which are
associated with essential boundary conditions.

It is noteworthy that the Shepard interpolant of
singular weighting function is an interpolation
which passes through data points, but which has

C° continuity. The first derivatives vanish at the
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data points. However, we are to start the
formulation with the Shepard interpolant. Let the

shape function be:

[(¢)]

#(x)af = q"(x) (14)

a"(x)a;s(x)a] = q"(%) (15)

After some algebraic manipulations, Eq.(15) is

where s(x) is Shepard interpolant(one column
matrix of n elements), whose components are
obtained from singular weighting function w'(x)

as shown below.

Si( x) — wif xl

) (10)
which implies
glsi(x)=1. (11)

Eq.(9) is not suitable for the problems requiring
C' continuity or more like FEM, and, thus a

modification is given to it.

()= cT(x)s(x) (12)

where ¢(x) is the coefficient matrix(one column

matrix of # elements) and s(x) the diagonal

matrix( zXn) whose elements are the same as

s(x) . Again ¢T(x) is described as

(13)

cT(x)=a"(x)q,

where a(x) is the coefficient matrix(one column
matrix of m elements) and ¢; is the (mxn)

matrix whose columns are the value of base at
each data point.

The convergency of solution in FEM is an
mmportant

property. The linear consistency

condition and stability guarantee the con-
vergence. Here the consistency condition can be
the constraint to determine a(x) . The linear
consistency is satisfied automatically, if the next

reproducibility is fulfilled.

— 42—

recasted into

Aa(x)= g(x) (16)

where A= g;s(x)qf , which is equivalent to

next expression.

A= g}si( %) a(x)qT(x") an

If A is invertible, the unknown coefficient
a(x) is obtained as below.

a(x)=A""q(x) (18)

Consequently the shape function is described as

#(x)=qgT()A Tq;s(x) . (19)

Here it is easy to confirm that ¢(x)=1 which

indicates that Eq.(19) is a true interpolation.
There are no singularities in Eq.(17)

Eq.(19) because of

and
limis"(x)= 8;, so no
1

additional description is needed to remove them.
If we do the matrix multiplications for grs(x) of
Eq.(19), it becomes matrix B of Eq.(5). Thus,
the present shape function is identical to that of
MLS. In order to save the matrix operations
reserved in Eq.(19), it is desirable' to carry this
out in the order from left to right{(we have not to

build matrix B explicitly as Eq.(6)).

4. Base And Weighting Function

4.1 The base

A weak point of MFGM is that the matrix A
frequently becomes a poorly conditioned matrix.
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Actually poor conditioning degrades the accuracy
of solution seriously, and, in some cases, it is
impossible to obtain solutions. The use of a
linear base rectifies this problem.

On the other hand, the Shepard interpolant is
suitable for MFGM since it has (°
continuity as mentioned previously. To improve
this, the Shepard interpolant is modified by
Eq.(19). If a singular weight function is used, the
linear base is insufficient for the modification. A

not

quadratic base is minimally required. This can be
easily explained with Eq.(19). The Shepard
interpolant has plateaus at the data points. The
modifier which precedes the Shepard interpolant
causes a flattening and heeling of the plateaus.
Here the linear base can not provide a sufficient
cure because the plateaus develop with the rate
of inverse of the distance.

discussed to
)

Two approaches have been
suppress the effect of poor conditioninglz; using

an orthogonal base and less multiplying

operations for inverting matrix A , for instance,
LDL”T decomposition. But these two methods
not to Actually
Gramm-Schmidt with
quadratic base was tested prior to this study, but

seem work very well

orthogonalization a
returned poor solutions.

Numerous studies are required in finding a
good base. But it appears that poor conditioning
is, to some extent, inherent in the pattem of
node distribution. In this context it would be
desirable to share our efforts in finding how to
generate nodes properly.

In this study, a quadratic base as below is
used.

(1,8 9,808 60 006 6 7, &) (20
where,
E=x—xy, 1=y— ¥, E=z2—2z

xp= 215‘(x)x‘ ., Y= ﬁlS‘(x)y‘,

= =

zy= 2}5‘( %)z’

The new origin xy is the weighted average of
coordinates of nodes contained in the influence
domain. By that the constant element of base is
orthogonal to linear elements. For convenience it
is still necessary to use x instead of ¢, 3,¢.

To reduce the dimension of matrix A , the
Gramm-Schmidt orthogonalization is applied only
to quadratic bases, generating new base as
below.

akx, ) =pi( - )— ]Z‘.lsi(x)bi(xi),i=5,ll (22)

Such calls additional
computations in the derivation of Eq.(19),
because of the base should be derived even at
data points due to the Shepard interpolant(see
Eq.(22)). But the second term of Eq.(22) is to be
dropped in present derivation. Later it will be

transformation for

seen in the numerical examples that this is a
good approximation. Hence the derivatives of

base and  shape function are described as

ax, )=0p; (23-1)

¢ (0D=[¢gT(DA T+ gD A D 1grs(x)

+eT (DA Tars (0. (23-2)
Here by taking into account the orthogonality
between the constant element of base and other
elements, Eq.(23-2) is expressed as

6 (D=[a" (DA T+ TN A" 1g;5(%)

I+ aT (0 A" Tq) 5 (2) . (23-3)

have

Of course matrix A, g¢(x), and ¢,

smaller dimensions than before by one.
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4.2 Weighting function

The singular weight presented by Lancaster
and Salkauskas” is used in the numerical

calculations.

base gives poor solutions in beam bending
problem due to the inherent nature of the beam
bending. However, the lower accuracy of a linear
base in bending problems is inherent in the

L 2 i .
w'(d')=—(f}7(1—%)2  di<p

w(d)=0, d>p (24)

where d' is the distance between x and x’, and
o is the radius of the influence domain. The
first derivative of weighting function is written
by

i 208—x)  d
W x= (di)4 ( o 1) (25)

5. Numerical Examples

5.1 Curve fitting

To inspect the behavior of the present shape
function, a curve fitting is supplied here. The
curve is shaped by 4 data points equally spaced;
(-20), (-1,2), (1,2), (20). The radius of the
influence domain o 1is 5. Three types of bases,
{(1],{1,x] and [1,x,x%] are tested.

The curved is directly fitted by the shape
function as below.

W) =4 u,] (26)

Fig.l shows the results. As expected the
fitting passes through the data points. The
constant base denoted by #z=1 products
plateaus at data points, and the linear base
seems not to improve the situation significantly.
However, with the quadratic base, the curve is
fitted reasonably. Fig.2 reflects its derivatives
by which we well understand the need for a
quadratic base. The base, [1,x°] is also tested
and gives the same results as the quadratic base.

Kaljevic and Saiga'™ have noted that the linear

nature-of shape funetion itself of singular weight
function as shown in Fig.2.

Matrix A can not be inverted at data points,
and the fitting becomes even more useless at its
neighboring points as shown in Fig.3 which
shows some unrealistic oscillations near the data
point. This problem can be circumvented easily
by shifting the field points very small distance
from the data points only when evaluating
matrix A . Fig4, obtained with small shifting(=
px1.8E—4), dictates the result by the scheme.

Fig. 1 Curve fitting

oon=

Fig. 2 Derivatives of fitted curve
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Fig.

T H T T T
0.0e+0 5.0e-5 1.0e-4 1.50-4 2.0e4 25e4

Normalized distance from the data point(d/p)

3 Derivatives in the neighborhood
of the data point x=—1

Table 1 Patch test for 13 nodes

1.3350

1.3345

1.3340 -

1.3335

1.3330 4

1.3325

1.3320 +

1.3315 T T {3 T T
-1.0015 -1.0010 -1.0005 -1.0000 -9995 -9990 -9985

X

Fig. 4 Approximated derivatives in the
neighborhood of the data point x=-—1

position of node 13

(01 01 01)

displacement of node 13

( 30E-01, .30E-01, .90E+00)

relative errors(%)

integration point(Xx,y,z)

[ oy [ Oxy Oy Oz

at all point

000 000 000 000 000 000

Table 2 Patch test for 15 nodes -

position of node 13

( 02, 03 06)

displacement of node 13

(.5887E-1, .9066E-1, .5747E+0)

relative errors(%)

integration point(x,y,z)

6. 0, O, 0y 0Oy Oxn

113 113 113
887 113 113
500 500 113
113 887 113

887 113

-

1

w

EEEEEE
FEE8

b

113

RERRELLEE S

1
887 113
500 500
113 887
887 887

111 105 455 .03 1.03
A1 23 47 15 30
1.00 100 367 .13 06

588

54 63 47 3B 49 31
4 27 47 19 35 46
68 55 145 13 181 81
60 87 244 13 132 292
57 34 145 01 67 122
36 48 9% 22 26 06
03 0 00 06 01 .17
15 08 294 15 43 00
30 53 00 .04 33 42
30 22 194 13 11 03
8 61 47 09 43 4
12 05 48 65 07 .16
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5.2 Patch test

Present shape function is designed to satisfy
consistency condition, and, hence it reproduces
the constant strain state. Simple patch tests(test

53 Cantilever bending

The cantilever, L=19.6(m), B=2.0(m), is
generated as Fig6. Dashed lines designate cell
division and solid circles nodes. The radius of

B'®) are performed to determine the constant
strain state.

For this purpose, a cube is selected. As material
parameter Poisson’s ratio is 0.3. The configuration
of the cube is shown in Fig.5. To produce the
constant strain state, essential boundary con-
ditions are imposed on nodes except for Node 13.

The results were taken on Gaussian integration
points(3X3X3). Table 1 and 2 show typical
results; Table 1 for 13 nodes, and Table 2 for
15 nodes. The relative errors were evaluated by

((Oeract— 0D/ 02, exac) X 100(%) .

The patch test of 13 nodes(Table 1) shows the
exact constant strain state, while the case of 15
nodes gives relatively less accuracy. It appears
that too many nodes exceeding the base size are
not desirable. The more eccentric node 13 is, the
more errors it gives in the case of 15 nodes, but
the case of 13 nodes gives the exact constant
state regardless of the position of node 13.

Loads(essential boundary)
1.0in Z~dir. : 1-4.9

0.5in Z-dir. : 10,12,14,15
Fixed in Z-dir. : 5,6,7,8,11

»° A
- /7
S/ e |
' 1 [ ]
: 11 05/ p
5 | 6
T 0 1 ™3 10®
| A0 e
! ‘o 3
: 714 o
/ l/
1 X 2

Fig. 5 The cube for patch tests

influence is 2.6(m). As an essential boundary
the left end is fixed, and point forces are
imposed on the nodes of the other end. Total
1,500( KN) is shared properly on the nodes of
right end. The number of integration points is
(4x4x4) per a cell. As material parameters,
Young’s modulus is 200(GPa) and Poisson’s
ratio 0.3.

z
p ,N(LsooKN)
FIXED END

Fig. 6 Cantilever modelled by MFGM

The bending stresses are compared with beam
theory in Fig. 7, and show good agreement.

—8— MFGM
——— Beam theory

20

= 10

I

3

H

H

2 oo AN

§ \.\
H \
2

H

@ 0

0.0 10 20 a0 4.0 5.0
Beam depth(m)

Fig. 7 Bending stresses at x=10.81

However, the shear stresses, as shown in Fig.8,
appear to have small discrepancies which are
supposed due to some numerical errors from the
lack of nodes in the depth direction and the
nonlinear shear stress distribution in the
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direction. The deflections of the neutral axis are
plotted in Fig. 9, which shows good agreement.
Shear deflections are accounted in the results of
beam theory.

.25

15 / X

i

Shear stresses(MPa)
~

SV EEa S

00 10 20 30 40 50
Beam depth(m)

Fig. 8 Shear stresses at x=10.81

'\. —&— MFGM
B4 ——— Beam theory
€
£ 6e-4
g
-
i
o
2e4
08+0 e’ SO
4 5 10 15 20
Distance(m)

Fig. 9 Deflections of neutral axis

5.4 Coupling with FEM

There are no problem in imposing essential
boundaries since the present shape function is an
interpolation. Therefore we understand that the
coupling is for computational efficiency and to
give flexibility to MFGM. In this example, we
show that coupling with FEM is made naturally.
Consider the cantilever, L=19.6(m), B=2.0(m),
d=4.0(m). The lower half is meshed by FEM
and upper by MFGM. For FEM modelling

nonconforming 8 node solid elements are used.

Of course we have no special considerations for
the coupling. Influence radius, material parameter
and essential boundaries are the same as in
Section 5.3. As loading, concentrated forces, total
amount of 900(KN), are applied to the nodes of
the right end.

The deflections are plotted in Fig. 11. A small
discrepancy on the curve can be seen. If shear
correction on the beam theory is considered, we
can have overlapped curves again, as in Fig9.
Fig. 12 shows good linearity of bending stresses
which indicates that the present shape function
is amiable to FEM. Here shear stresses are not
compared due to lack of mesh division in depth.

) mram A ¢P(900K N)
L] Fem
anr-:o/’ — e i
FriToTiTT T 4 ey
O 155 00 G 00 £ 065 6 0 00 O 0 W 60 ¢ -
< rrrrrrrrrrrerr

Fig. 10 Coupled modelling by MFGM and FEM

Displacemeantim
f I

Distance(m)

Fig. 11 Deflections of coupled modelling

5.5 Penny-shaped crack

A penny-shaped crack immersed in the right
cube is considered The dimension of the cube is
100(mm) in the edge length and it is subjected to

uniform tension(nominal stress is 100(MPaz).
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20

~@— MFGM+FEM
~—— Beam theory

2 e

Bending strésses(MPa)

FEM MFGM

<20
0.0 20

Beam depth(m)

40

Fig. 12 Bending stresses of coupled modelling

The material parameters are 21(GPa) and 0.3
modulus
respectively. The penny-shaped crack, having a

for Young's and Poisson’s ratio
radius of 10(mm), is positioned at the center of
the cube.

Taking advantage of the symmetric properties
of the cube under tension, just one eighth is
counted in the computation. The core of cube is
meshed by cells of MFGM, and the remainder by
8-node nonconforming solid elements of FEM.
The process of meshing is quite simple; first
mesh the cube by FEM and delete the core for
MFGM meshes(see Fig.13), next mesh the core
by MFGM and generate nodes(see Fig.13), finally
generate nodes along crack front(see Fig.14).
Note that nodes near the crack tip appear
irregular.

A (4x4x4) Gauss integration rule is used.
The radius of the influence which is variable and
controlled by cell size, is 1.15 times of maximum
diagonal distance of each cell.

For reference, the analytical solution for an
unbounded domain is used. If a/R<1/5, the
difference between numerical solutions of the
finite domain and the unbounded domain is
negligible. Thus the present numerical solution
can be compared with the analytical stress
factors in

intensity of penny-shaped crack

e e . . . 7
infinitive domain given below'”.

(27

Kim2o T

The numernical stress intensity factors are

evaluated directly from the crack surface
displacements. T T~
Kk,=2072r . Y (28)

where G is the shear modulus, x=3—4v ,4V
the crack face displacement at a point at which
the distance is 7 in a normal direction from
crack tip.

The results are compared with the analytical
solution in Fig.15. The present calculation gives

uniform K; values along the crack front except

in the starting and ending regions, as well as
very close to the analytical values. In fact the
K, of the present calculation are sensitive to
node distributions near the crack tip. Fig.16
shows other results which are obtained from
alternative node arrangement. These oscillate
along the crack front. Such tendency has been
shown by Belytschkom). These data indicate the
need for additional studies relative to regulating

oscillations.

6. Conclusion

The shape function for MFGM is presented in
this paper The shape function is formulated by
the Shepard interpolant and consistency condition
instead of the MLS process. Here the Shepard
interpolant is taken as partition of unity. The
singular weight function is employed. in order to
achieve a true interpolation.

Three-dimensional problems are solved to
verify the present shape function. Simple curve
fitting shows some properties of the present
shape function explicitly. Two cantilever bending
examples show the accuracy of present shape
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function, and proves that coupling with FEM can

be made without additional considerations.
Finally, a penny-shaped crack immersed in the

cube solved.

summarized as follows.

is Some observation are
1) The resulting description of the present
identical to MLS
function, provided the Shepard interpolant as
used MLS

However, the present shape function suggests

shape function is shape

weighting  is for formulation.
that it is not advisable to preform matrix B of

MLS formulation for computational efficiency.

50

CRACK ERONT

50

MFGM
LIFEM

Fig. 13 Meshes of cube by MFGM and FEM

// 'L Th.

/I . . 4
T ’|,/- 5 .
T/ o . 12.5
bt —
L -
L4 LR o
yoLov e - SR g
v ‘ Lo 7 - "/ﬁ//‘ L s
. o ey T

Fig. 14 Node generation along a crack front

2) The present shape function has removable
singularities. Thus additional considerations are
not required,

3) When using singular weight function, the
use of a quadratic base, at a minimum, is
inevitable for accuracy. It has been concluded
that linear base gives poor solutions in beam
bending problems due to the nature of the beam
bendingls). Actually the selection of the base
seriously affects accuracy if a singular weight
function. is used. The lower accuracy of linear

base in bending problem is

0.0 . ;
15 30

T
45 60

——
%5

Fig. 15 Stress intensity factors

00 T T T T T
15 30 45 60

Angle along crack front(deg.}
Fig. 16 Stress intensity factors of alternative node
arrangement

inherent in the nature of shape function itself in
the singular weighting function.

4) With a quadratic base, frequently matrix A of
Eq.(17) is poorly conditioned. Two approachesm)
are not effective in improving the conditioning,
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and it appears that a careful node generation
can be a solution for this problem. However,
such consideration has not been found in the

literature._

5 K , values of present calculation are sensifive -

to node distributions near the crack tip(see Fig.16).
This indicates the need for additional studies
related to regulating oscillations, e.g., remapping of

displacements.
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