• Title/Summary/Keyword: Electrospun

Search Result 285, Processing Time 0.024 seconds

Effect of Calcination Temperature on the Microstructure and Photocatalytic Activity of Electrospun BiVO4 Nanofiber (전기방사를 이용하여 합성한 BiVO4 나노섬유의 미세구조와 광촉매 특성에 하소 온도가 미치는 영향)

  • Ji, Myeongjun;Kim, Jeong Hyun;Ryu, Cheol-Hui;Ko, Yun Taek;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.226-232
    • /
    • 2020
  • Bismuth vanadate (BiVO4) is considered a potentially attractive candidate for the visible-light-driven photodegradation of organic pollutants. In an effort to enhance their photocatalytic activities, BiVO4 nanofibers with controlled microstructures, grain sizes, and crystallinities are successfully prepared by electrospinning followed by a precisely controlled heat treatment. The structural features, morphologies, and photo-absorption performances of the asprepared samples are systematically investigated and can be readily controlled by varying the calcination temperature. From the physicochemical analysis results of the synthesized nanofiber, it is found that the nanofiber calcines at a lower temperature, shows a smaller crystallite size, and lower crystallinity. The photocatalytic degradation of rhodamine-B (RhB) reveals that the photocatalytic activity of the BiVO4 nanofibers can be improved by a thermal treatment at a relatively low temperature because of the optimization of the conflicting characteristics, crystallinity, crystallite size, and microstructure. The photocatalytic activity of the nanofiber calcined at 350℃ for the degradation of RhB under visible-light irradiation exhibits a greater photocatalytic activity than the nanofibers synthesized at 400℃ and 450℃.

Mechanical Interfacial Properties of Electrospun-based Poly(ethyleneoxide) Nanofibers/Epoxy Composites (전기방사한 폴리에틸렌옥사이드 나노섬유/에폭시 복합재료의 기계적 계면특성)

  • Jeong Hyo-Jin;Lee Jae-Rock;Park Soo-Jin
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.31-37
    • /
    • 2005
  • In this work, poly(ethylene oxide) (PEO) nanofibers were fabricated by electrospinning to prepare the nanofibers-reinforced composites. And the PEO powders-impregnated composites were also prepared to compare the mechanical interfacial behaviors of the composites. Morphology and fiber diameter of PEO nanofibers were determined by SEM observation. Mechanical interfacial properties of the composites were investigated in fracture toughness $(K_{IC})$ and interlaminar shea. strength (ILSS) tests. As a result, the fiber diameter was decreased with increasing the applied voltage. And optimum condition for the fiber formation was 15 kV, resulting from increasing of jet instability at high voltage. The PEO-based nanofibers-reinforced epoxy composites showed the improvements of both $K_{IC}$ and ILSS, compared to the composites impregnated with PEO powders. These results indicated that the nanofibers had higher specific surface area and larger aspect ratio than those of the powders, which played an important role in improving the mechanical interfacial properties of the composites.

The Effect of the Core-shell Structured Meta-aramid/Epoxy Nanofiber Mats on Interfacial Bonding Strength with an Epoxy Adhesive in Cryogenic Environments (극저온 환경에서 에폭시 접착제의 물성 향상을 위한 나노 보강재의 표면 개질에 관한 연구)

  • Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • The strength of adhesive joints employed in composite structures under cryogenic environments, such as LNG tanks, is affected by thermal residual stress generated from the large temperature difference between the bonding process and the operating temperature. Aramid fibers are noted for their low coefficient of thermal expansion (CTE) and have been used to control the CTE of thermosetting resins. However, aramid composites exhibit poor adhesion between the fibers and the resin because the aramid fibers are chemically inert and contain insufficient functional groups. In this work, electrospun meta-aramid nanofiber-reinforced epoxy adhesive was fabricated to improve the interfacial bonding between the adhesive and the fibers under cryogenic temperatures. The CTE of the nanofiber-reinforced adhesives were measured, and the effect on the adhesion strength was investigated at single-lap joints under cryogenic temperatures. The fracture toughness of the adhesive joints was measured using a Double Cantilever Beam (DCB) test.

Preparation and Characterization of Electrospun Nanofibers Containing Natural Antimicrobials (천연 향균물질 함유 나노섬유의 제조 및 특성분석)

  • Kim, Young-Jin;Kim, Sang-Nam;Kwon, Oh-Kyoung;Park, Mi-Ran;Kang, Inn-Kyu;Lee, Se-Geun
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.307-312
    • /
    • 2009
  • The fabrication of PHBV nanofibers containing various plant polyphenols by electrospinning has been examined. It has been found that the average diameters of fibers increased by the adding of polyphenols. The resulting fibers exhibited a uniform diameter ranging from 340 to 450 nm. As the concentration of polyphenols increased, the diameter of fibers increased due to the hydrogen bonding interaction between the ester groups of PHBV and hydroxyl groups of polyphenols. The interaction between PHBV and polyphenols, which forms a complex together in solution, was verifed by UV measurement. ATR-FTIR analysis confirmed the existence of the hydrogen bonding interaction. The semicrystalline structure of the PHBV nanofiber was observed from XRD pattern. The crystallinity of PHBV nanofibers was increased by the adding of polyphenols. PHBV nanofibers containing polyphenols showed superior antimicrobial activities.

Preparation and Characterization of Sodium Alginate/PEO and Sodium Alginate/PVA Nanofiber (알긴산나트륨/PEO, 알긴산나트륨/PVA 나노섬유의 제조 및 특성분석)

  • Park, Ko-Eun;Park, Su-A;Kim, Geun-Hyung;Kim, Wan-Doo
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.206-212
    • /
    • 2008
  • Alginate obtained from marine brown algae, is a copolymer with repeating units of $\alpha$-($1{\rightarrow}4$)-L-guluronic acid(G) and $\beta$-($1{\rightarrow}4$)-D-mannuronic acid(M). It has good properties such as biocompatibility, non-toxicity. and hydrophilicity. However, alginate alone cannot be electrospun due to high viscosity and conductivity. To solve this problem. electro spinning of sodium alginate(SA) was performed by blending with poly(ethylene oxide)(PEO) and poly(vinyl alcohol)(PVA) in this study. Characteristics of SA/PEO nanofibers and SA/PVA nanofibers were estimated by SEM and XRD analyses. Optimal nanofiber webs are obtained from 2/2 wt% of SA/PEO and 2/7 wt% of SA/PVA. SA/PEO and SA/PVA nanofiber webs may have potentials for tissue engineering scaffold and wound dressing.

Effect of Fiber Orientation on Ionic Conductivity of Electrospun Polyimide Nanofibers Mats (전기방사 폴리이미드 나노섬유매트의 섬유배향이 이온전도도에 미치는 영향)

  • Huh, Yang-Il;Kim, Young-Hee;Ahn, Jou-Hyeon;Lee, Hong-Ki;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.40-43
    • /
    • 2010
  • In this study, polyimide(PI) nanofibers mats were prepared by electrospinning and three different fiber morphologies of random, uniaxial, and biaxial orientation were prepared by controlling the speed of drum-shaped collector and other parameters. The SEM studies reveal that the aforesaid morphologies were obtained on the nano-fibrous mats prepared. The ionic conductivity was measured using an in-plane type conductivity tester for the PI mats soaked in the mixture of 1M lithium trifluoro-methane-sulfonate and tetra-ethylene glycol dimethyl ether. The ionic conductivity was surprisingly higher for the biaxial PI mats. For the uniaxially-oriented mats, the ionic conductivity was found to be higher in the parallel direction compared to the perpendicular direction of the fiber orientation. A curious cyclic fluctuation was found in the ionic conductivity with time. The observed behavior was explained by considering the distance between fibers and transport speed of ions used in this study.

Development Trend of Nanofiber Filter (나노섬유 필터의 개발 동향)

  • Kang Inn-Kyu;Kim Young-Jin;Byun Hong-Sik
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Nanofiber is a broad phrase generally referring to a fiber with diameter less than 1 micron. Various polymers have been successfully electrospun into nanofibers in recent years. These nanofibers, due to their high surface area and porosity, have a great potential for use as filter medium, adsorption layers in protective clothing, etc. Nanofiber filters will enable new levels of filtration performance in the field of air filtration. In particular, nanofibers provide marked increases in filtration efficiency at relatively small pressure drop in permeability. Therefore, nanofiber filters could be substituted for conventional filter market due to the easy application of process and the possibility of coating to micron-sized non-woven sheets. This review is discussed on the trend of researche and development related to nanofiber filter including future marketability.

Synthesis and Characterization of Ruthenium Doped TiO2 Nanofibers

  • Park, Jung-Yeon;Lee, Deuk-Yong;Cho, Nam-Ihn;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.82-89
    • /
    • 2011
  • Ruthenium(Ru)-doped $TiO_2$ nanofibers were prepared using electrospun Ru-$TiO_2$/poly(vinyl acetate) (PVAc) fibers and subsequent annealing for 1 h at temperatures in the range of $500^{\circ}C$ to $1000^{\circ}C$ in air. The properties of the Ru-$TiO_2$ fibers were characterized as a function of the Ru content and calcination temperature using X-ray diffraction, thermal gravimetry with differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and viscometer, pycnometer and dynamic tensiometer measurements. Although the diameter of the fiber decreased slightly with increasing calcination temperature, no dramatic changes were observed with respect to the ruthenium content. The XRD and FT-IR results revealed that anatase phase and ruthenium metal began to be formed after calcination at temperatures above $500^{\circ}C$. Anatase and rutile phases and ruthenium metal coexisted in the fibers calcined above $600^{\circ}C$. No anatase phase was detected in the fibers containing ruthenium when they were calcined at $1000^{\circ}C$. The morphology of the fibers changed from smooth and uniform to porous with increasing temperature. The experimental results suggest that the calcination temperature and Ru content were influential in determining the morphology and structure of the fibers.

Effects of the Mechanical Stretch on Aligned Multi-Layered Nanofibrous Scaffolds Seeded with Smooth Muscle Cells (기계적 자극이 다층 구조의 나노파이버 지지체의 평활근 세포에 미치는 영향)

  • Shin, Ji-Won;Kim, Dong-Hwa;Heo, Su-Jin;Kim, Su-Hyang;Kim, Young-Jick;Shin, Jung-Woog
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2008
  • The object of this study is to investigate the effects of intermittent cyclic stretching on the smooth muscle cells (SMCs) seeded onto aligned multi-layered fibrous scaffold. To make multi-layered fibrous scaffold, polyurethane (PU) and poly(ethylene oxide) (PEO) were electrospun alternatively, then were immersed into distilled water to extract PEO. Various types of scaffolds were fabricated depending on fiber directions, i.e., aligned or randomly oriented. The direction of stretching was either parallel or vertical to the fiber direction for the aligned scaffolds. The stretching was also applied to the randomly aligned scaffolds. The duration of stretching was 2 min with 15 min resting period. During the stretching, the maximum and minimum strain was adjusted to be 10 and 7%, respectively with the frequency of 1 Hz. The bioactivities of cells on the scaffolds were assessed by quantifying DNA, collagen, and glycosaminoglycan (GAG) levels. And the cell morphology was observed by staining F-actin. SMCs under parallel stretching to the fiber direction responded more positively than those in other conditions. From the results, we could explain the morphological effect of a substrate on cellular activities. In addition the synergistic effects of substrate and mechanical stimuli effects were confirmed.

Preparation and Characterization of Temperature-Sensitive Poly(N-isopropylacrylamide)-g-Poly(L-lactide-co-$\varepsilon$-caprolactone) Nanofibers

  • Jeong, Sung-In;Lee, Young-Moo;Lee, Joo-Hyeon;Shin, Young-Min;Shin, Heung-Soo;Lim, Youn-Mook;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • Biodegradable and elastic poly(L-lactide-co-$\varepsilon$-caprolactone) (PLCL) was electrospun to prepare nanofibers, and N-isopropylacrylamide (NIPAAm) was then grafted onto their surfaces under aqueous conditions using $^{60}Co-{\gamma}$ irradiation. The graft yield increased with increasing irradiation dose from 5 to 10 kGy and the nanofibers showed a greater graft yield compared with the firms. SEM confirmed that the PLCL nanofibers maintained an interconnected pore structure after grafting with NIPAAm. However, overdoses of irradiation led to the excessive formation of homopolymer gels on the surface of thc PLCL nanofibers. The equilibrium swelling and deswelling ratio of the PNIPAAm-g-PLCL nanofibers (prepared with 10 kGy) was the highest among the samples, which was consistent with the graft yield results. The phase-separation characteristics of PNIPAAm in aqueous conditions conferred a unique temperature-responsive swelling behavior of PNIPAAm-g-PLCL nanofibers, showing the ability to absorb a large amount of water at < $32^{\circ}C$, and abrupt collapse when the temperature was increased to $40^{\circ}C$. In accordance with the temperature-dependent changes in swelling behavior, the release rate of indomethacin and FITC-BSA loaded in PNIPAAm-g-PLCL nanofibers by a diffusion-mediated process was regulated by the change in temperature. Both model drugs demonstrated greater release rate at $40^{\circ}C$ relative to that at $25^{\circ}C$. This approach of the temperature-controlled release of drugs from PNIPAAm-g-PLCL nanofibers using gamma-ray irradiation may be used to design drugs and protein delivery carriers in various biomedical applications.