Development Trend of Nanofiber Filter

나노섬유 필터의 개발 동향

  • Kang Inn-Kyu (Nano Practical Application Center, Daegu Techno Park, Department of Polymer Science, Kyungpook National University) ;
  • Kim Young-Jin (Nano Practical Application Center, Daegu Techno Park) ;
  • Byun Hong-Sik (Department of Chemical System Engineering, Keimyung University)
  • 강인규 ((재)대구테크노파크 나노부품실용화센터, 경북대학교 고분자공학과) ;
  • 김영진 ((재)대구테크노파크 나노부품실용화센터) ;
  • 변홍식 (계명대학교 화학시스템공학과)
  • Published : 2006.03.01

Abstract

Nanofiber is a broad phrase generally referring to a fiber with diameter less than 1 micron. Various polymers have been successfully electrospun into nanofibers in recent years. These nanofibers, due to their high surface area and porosity, have a great potential for use as filter medium, adsorption layers in protective clothing, etc. Nanofiber filters will enable new levels of filtration performance in the field of air filtration. In particular, nanofibers provide marked increases in filtration efficiency at relatively small pressure drop in permeability. Therefore, nanofiber filters could be substituted for conventional filter market due to the easy application of process and the possibility of coating to micron-sized non-woven sheets. This review is discussed on the trend of researche and development related to nanofiber filter including future marketability.

나노섬유란 $1{\mu}m$ 이하의 섬유를 의미하며 멜트블로운(Melt blown), 복합방사, 분할방사, 전기방사 등의 방법으로 제조된다. 나노섬유는 초극세 섬유로서 섬유의 생성과 동시에 3차원의 네트워크로 융착되어 적층된 형태의 다공성 웹은 초박막, 초경량이며 기존 섬유에 비해 부피 대비 표면적비가 지극히 높고, 높은 기공도를 지니고 있다. 이러한 특성으로 인해 가스나 액체로부터 미세입자를 분리하는 고효율 초기능성 필터 소재로 활용될 수 있으며, 나노섬유로 구성된 필터는 여과 효율이 높고 공극율이 매우 높아 필터에서 발생하는 압력강하가 적다. 또한 공정의 적용이 용이하여 기존의 부직포 등의 소재에 코팅이 가능하므로, 나노섬유 필터는 기존 부직포 필터 시장의 대부분을 대체할 것으로 기대되어 진다. 본 총설에서는 나노섬유 필터의 연구개발 동향과 공업적 제조기술의 문제점 및 향후 시장성에 대해서 고찰하였다.

Keywords

References

  1. J. D. Stizel, G. L. Bowlin, K. Mansfield, G. E. Wnek, and D. G. Simpson, 'Electrospraying and electrospinning of polymers for biomedical applications. Poly(lactic-co-glycolic acid) and poly( ethylene-co-vinyl acetate),' Int. SAMPE Technol. Conf, 32, 205 (2000)
  2. H. Fong, I. Chun, and D. H. Reneker, 'Beaded nanofibers formed during electrospinning,' Polymer, 42, 261 (2001) https://doi.org/10.1016/S0032-3861(00)00250-0
  3. N. Chanunpanich, Hongsik Byun, and Inn-kyu Kang, 'Membrane Morphology: Phase Inversion to Electrospinning' 멤브레인, 15(2), 85 (2005)
  4. 김동복, 박정호, '전기방사에 의한 나노섬유 제조 및 응용,' 전기의 세계, 52, 33 (2003)
  5. A. Frenot and I. S. Chronakis. 'Polymer nanofibers assembled by electrospinning. Curr. Opinion in Colloid and Interfaces Science,' 8(1), 64 (2003) https://doi.org/10.1016/S1359-0294(03)00004-9
  6. J. M. Deitzel, J. Kleinmeyer, J. K. Hirvonen, and T. N. C. Beck, 'Controled deposition of electrospun poly(ethylene oxide) fibers,' Polymer, 42, 8163 (2001) https://doi.org/10.1016/S0032-3861(01)00336-6
  7. H. Fong and D. H. Reneker, 'Electrospinning and formation of nanofibers. In: Structure Formation in Polymeric Fibers,' Hanser, Mnnich (2001)
  8. S. A. Theron, E. Zussman, and A. L. Yarin. 'Experimental investigation of the governing parameters in the electrospinning of polymer solutions,' Polymer, 45, 2017 (2004) https://doi.org/10.1016/j.polymer.2004.01.024
  9. A. Koski, K. Yim, and S. Shivkumar. 'Effect of molecular weight on fibrous PVA produced by electrospinning,' Mat. Lett., 58, 493 (2004) https://doi.org/10.1016/S0167-577X(03)00532-9
  10. J. Doshi and D. H. Reneker, 'Electrospinning process and applications of electrospun fibers,' J. Electrostatics, 35, 151 (1995) https://doi.org/10.1016/0304-3886(95)00041-8
  11. K. J. Pawlowski, H. L. Belvin, D. L. Raney, J. Su, J. S. Harrison, and E. J. Siochi, 'Electrospinning of a micro-air vehicle wing skin,' Polymer, 44, 1309 (2003) https://doi.org/10.1016/S0032-3861(02)00859-5
  12. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N.C.B. 'Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles,' Polymer, 42, 261 (2001) https://doi.org/10.1016/S0032-3861(00)00250-0
  13. H. Fong and D. H. Reneker, 'Elastomeric nanofibers of styrenebutadienestyrene triblock copolymer,' J. Polym. Sci.: Part B Polym. Phys., 37, 3488 (1999) https://doi.org/10.1002/(SICI)1099-0488(19991215)37:24<3488::AID-POLB9>3.0.CO;2-M
  14. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, 'A review on polymer nanofibers by electrospinning and their applications in nanocom-posites,' Composites Science and Technology, 63, 2223 (2003) https://doi.org/10.1016/S0266-3538(03)00178-7
  15. S. A. Theron, A. L. Yarin, E. Zussman, and E. Kroll, 'Multiple jets in electrospinning: experiment and medeling,' Polymer, 46, 2889 (2005) https://doi.org/10.1016/j.polymer.2005.01.054
  16. B. Ding, E. Kimura, T. Sato, S. Fujita, and S. Shiratori, 'Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning,' Polymer, 45, 1895 (2004) https://doi.org/10.1016/j.polymer.2004.01.026
  17. 本宮達也, ナノファイパーテクノロヅーを用いた高度産業發掘戰略', シー エムシー出版, 東京 (2004)
  18. 김세용, 강인규, 권오형, 'A biodegradable nanofiber scaffold by electrospinning and its potential as wound dressing,' 한국고분자학회 연구논문초록, 29(2), 350 (2004)
  19. T. Grafe and K. Graham, 'Polymeric nanofibers and nanofiber webs: A new class of nonwovens,' International Nonwovens Technical Conference, Georgia, Atlanta (2002)
  20. T. Grafe, M. Gogins, M. Barris, J. Schaefer, and R. Canepa, 'Nanofibers in filtration applications in transportation,' International Conference and Exposition of the INDA, Illinois, Chicago (2001)