Mechanical Interfacial Properties of Electrospun-based Poly(ethyleneoxide) Nanofibers/Epoxy Composites

전기방사한 폴리에틸렌옥사이드 나노섬유/에폭시 복합재료의 기계적 계면특성

  • 정효진 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부) ;
  • 박수진 (한국화학연구원 화학소재연구부)
  • Published : 2005.06.01

Abstract

In this work, poly(ethylene oxide) (PEO) nanofibers were fabricated by electrospinning to prepare the nanofibers-reinforced composites. And the PEO powders-impregnated composites were also prepared to compare the mechanical interfacial behaviors of the composites. Morphology and fiber diameter of PEO nanofibers were determined by SEM observation. Mechanical interfacial properties of the composites were investigated in fracture toughness $(K_{IC})$ and interlaminar shea. strength (ILSS) tests. As a result, the fiber diameter was decreased with increasing the applied voltage. And optimum condition for the fiber formation was 15 kV, resulting from increasing of jet instability at high voltage. The PEO-based nanofibers-reinforced epoxy composites showed the improvements of both $K_{IC}$ and ILSS, compared to the composites impregnated with PEO powders. These results indicated that the nanofibers had higher specific surface area and larger aspect ratio than those of the powders, which played an important role in improving the mechanical interfacial properties of the composites.

본 연구에서는 나노섬유로 강인화된 복합재료를 만들기 위해 전기방사방법을 이용해서 폴리에틸렌옥사이드 (PEO) 나노섬유를 제조하였고, 제조된 복합재료와의 기계적 계면특성을 비교하기 위해 PEO 입자로 강인화된 복합재료를 제조하였다. PEO 나노섬유의 파이버 직경과 모폴로지는 주사전자현미경을 통해 관찰하였고, 복합재료의 기계적 계면특성은 파괴인성 $(K_{IC})$과 층간 전단 강도실험 (ILSS)을 통하여 알아보았다. 실험결과, 인가전압이 증가될수록 파이버의 직경은 감소하였고. 고전압에서 제트 불안정성의 증가로 인해서 최적의 섬유구조는 15 kV에서 얻을 수 있었다. PEO 나노섬유로 강인화된 에폭시 복합재료는 파괴인성인자 값인 $K_{IC}$와 ILSS가 PEO 입자로 강인화된 복합재료보다 향상된 값을 나타내었다. 이는 나노섬유가 입자에 비해 높은 비표면적과 aspect ratio를 가짐에 따라 복합재료의 기계적 계면특성을 향상시키는데 중요한 역할을 하는 것으로 판단된다.

Keywords

References

  1. K. F. Zieminski and J. E. Spruiell, 'On-Line Studies and Computer Simulation of the Melt Spinning of Nylon-6,6 Filaments,' Journal of Applied Polymer Science, Vol. 35, 1988, pp. 2223-2245 https://doi.org/10.1002/app.1988.070350822
  2. P. J. Barham and A. Keller, 'High-Strength Polyethylene Fibres from Solution and Gel Spinning,' Journal of Materials Science, Vol. 20, 1985, pp. 2281-2302 https://doi.org/10.1007/BF00556059
  3. S. J. Park and J. R. Lee, 'Bending Fracture and Acoustic Emission Studies on Carbon-Carbon Composites: Effect of Sizing Treatment on Carbon Fibres,' Journal of Materials Science, Vol. 33, 1998, pp. 647-651 https://doi.org/10.1023/A:1004373208656
  4. I. Blanco, G. Cicala, C. Lo Faro, and A. Recca, 'Improvement of Thermomechanical Properties of a DGEBS/DDS System Blended with a Novel Thermoplastic Copolymer by Realization of a Semi-IPN Network,' Journal of Applied Polymer Science, Vol. 88, 2003, pp. 3021-3025 https://doi.org/10.1002/app.12007
  5. K. Mimura, H. Ito, and H. Fujioka, 'Toughening of Epoxy Resin Modified with in situ Polymerizaed thermoplastic Polymers,' Polymer, Vol. 42, 2001, pp. 9223-9233 https://doi.org/10.1016/S0032-3861(01)00460-8
  6. K. Mimura, H. Ito and H. Fujioka, 'Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins,' Polymer, Vol. 41, 2000, pp. 4451-4459 https://doi.org/10.1016/S0032-3861(99)00700-4
  7. Nobuhiro Tanaka, Takao Iijima, Wakichi Fukuda, and Masao Tomoi, 'Synthesis and Properties of Interpenetrating Polymer Networks Composed of Epoxy Resins and Polysulphones with Cross-linkable Pendant Vinylbenzyl Groups,' Polymer International, Vol. 42, 1997, pp. 95-106
  8. C. A. May, Ed. Epoxy Resins : Chemistry and Technology; Marcel Dekker, New York, 1988
  9. A. Ravve, Principles of Polymer Chemistry; Kluwer Academic/Plenum: New York, 1998
  10. S. S. Roh, B. T. Hong, and D. S. Kim, 'Curing and Mechanical Properties of Dicyanate/Poly(ether sulfone) Semi-Interpenetrating Polymer Networks,' Journal of Applied Polymer Science, Vol. 87, 2003, pp. 1079-1084 https://doi.org/10.1002/app.11493
  11. C. Datta, D. Basu, A. Roy, and A. Banerjee, 'Mechanical and Dynamic Mechanical Studies of Epoxy/Vac-EHA/HMMM IPN-Jute Composite Systems,' Journal of Applied Polymer Science, Vol. 91, 2004, pp. 958-963 https://doi.org/10.1002/app.13295
  12. P. S. Razi, R. Portier, and A. Raman, 'Studies on Polymer-Wood Interface Bonding: Effect of Coupling Agents and Surface Modification,' Journal of Composite Materials, Vol. 33, 1999, pp. 1064-1079 https://doi.org/10.1177/002199839903301201
  13. J. Gassan, 'A Study of Fibre and Interface Parameters Affecting the Fatigue Behavior of Natural Fibre Composites,' Composites Part A: Applied Science and Manufacturing, Vol. 33, 2002, pp. 369-374 https://doi.org/10.1016/S1359-835X(01)00116-6
  14. S. J. Park, M. H. Kim, J. R. Lee, and S. Choi, 'Effect of Fiber-Polymer Interactions on Fracture Toughness Behavior of Carbon Fiber-Reinforced Epoxy Matrix Composites,' Journal ol Colloid and Interface Science, Vol. 228, 2000, pp. 287-291 https://doi.org/10.1006/jcis.2000.6953
  15. S. J. Park and Y. S. Jang, 'Interfacial Characteristics and Fracture Toughness of Electrolytically Ni-Plated Carbon Fibers-Reinforced Phenolic Resin Matrix Composites,' Journal of Colloid and Interlace Science, Vol. 237, 2001, pp. 91-97 https://doi.org/10.1006/jcis.2001.7441
  16. S. J. Park, Interfacial Forces and Fields: Theory and Application, ed. By J. P. Hsu, Marcel Dekker, New York, 1999
  17. S. J. Park, D. I. Seo, and C. W. Nah, 'Effect of Acidic Surface Treatment of Red Mud on Mechanical Interfacial Properties of Epoxy/Red Mud Nanocomposites,' Journal of Colloid and Interlace Science, Vol. 251, 2002, pp. 225-229 https://doi.org/10.1006/jcis.2002.8336
  18. M. M. Hohman, M. Shin, G. Rutledhe, and M. P. Brenner, 'Electrospinning and Electrically Forced Jets. I . Stability Theory,' Physics and Fluids, Vol. 13, 2001, pp. 2201-2220 https://doi.org/10.1063/1.1383791
  19. T. Norita, J. Matsui, and H. S. Matsuda, Composite Interlaces, eds. By H. Ishida and J. L. Koenig, Elsevier, New York, 1986
  20. A. J. Kinloch and D. L. Hunston, 'Effect of volume fraction of dispersed rubbery phase on the toughness of rubber-toughened epoxy polymers,' Journal of Materials Science Letters, Vol. 6, 1987, pp. 37-139 https://doi.org/10.1016/0167-577X(87)90098-X
  21. S. J. Park M. K. Seo, and K. Y. Rhee, 'Studies on mechanical interfacial properties of oxy-fluorinated carbon fibers-reinforced composites,' Materials Science and Engineering A, Vol. 356, 2003, pp. 219-226 https://doi.org/10.1016/S0921-5093(03)00134-5