• Title/Summary/Keyword: Electronics Control

Search Result 11,455, Processing Time 0.044 seconds

The Effect of Online Learning Using Note-Taking on Academic Achievement (노트 필기를 사용한 온라인 학습이 학업성취도에 미치는 영향)

  • Yoon, Seok-Beom;Chang, Eun-Young
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.333-339
    • /
    • 2022
  • In this study, we study the effects of note-taking skills on students' academic performance, satisfaction, and concentration, and immersiveness when students are taking online classes. The Cornell note format was used for the note-taking skills. The survey result shows that note-taking skills in online class increase students' diligence, participation, and concentration. We find a strong positive correlation between the number of Cornell note submission and academic performance, and we show that the association between two is a statistically significant by using simple/multiple regression analysis. The multiple regression result shows that one unit increase in the Cornell note submission is associated with the increase in 0.253 midterm score on average. In addition, one unit increase in the Cornell note submission is associated with increase in 0.287 final exam score on average. Further, we conduct bootstrapping regression as a robustness test and show that the results are consistent with the simple/multiple regression results. These analyses show that Cornell note taking skills in online classes can be beneficial for students to improve the quality of their learning.

An Empirical Study on the Effects of Non-Tariff Barriers on FTAs: Regarding Import Control Measures of the Target Country on Korea's FTA (자유무역협정에 대한 비관세장벽의 효과에 관한 실증연구: 한국의 자유무역협정과 체결 대상국의 수입규제조치에 대하여)

  • Oh, Dae-Hyuck
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.2
    • /
    • pp.187-203
    • /
    • 2021
  • Purpose - The purpose of this study is to analyze the effects of non-tariff barriers on the Free Trade Agreement. Currently, it has achieved significant export effects by signing free trade agreements with many countries in Korea. However, most countries have implemented non-tariff barriers to protect their industries. This study analyzes the effects of non-tariff barriers in counterpart countries that have signed a free trade agreement. Design/methodology/approach - For analysis, first, prior studies were summarized, and second, the current status of free trade agreements and non-tariff barriers were identified. And, based on the current situation, the relationship between non-tariff barriers and export volume was analyzed. The targets of analysis are the United States, China, and Vietnam, which are Korea's three largest exporters. As for non-tariff barriers, anti-dumping tariffs, countervailing tariffs, and emergency import restrictions were analyzed as import regulatory measures. Findings - In the case of the United States, it can be seen that the decline in textiles, steel and electronics sectors is even greater. In the case of China, it can be seen that exports declined after imposing non-tariff barriers in the steel sector. Finally, it can be seen that exports declined after Vietnam implemented a non-tariff barrier on the steel sector. It was found that non-tariff barriers offset the effects of the Free Trade Agreement. Research implications or Originality - Currently, Korea has free trade agreements with numerous countries. However, after the free trade agreement entered into force, the number of annual average import regulation investigations for Korean products is on the rise. In the end, the implementation of non-tariff barriers is offsetting the effects of free trade agreements. Therefore, when signing a free trade agreement, it is necessary to thoroughly prepare for import regulatory measures such as the insertion of provisions of non-tariff barriers.

Development of Criteria for Predicting Delamination in Cabinet Walls of Household Refrigerators (냉장고 캐비닛 벽면에서 발생하는 박리현상 예측을 위한 평가 기준 개발에 관한 연구)

  • Park, Jin Seong;Kim, Sung Ik;Lee, Gun Yup;Cho, Jong Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.1-13
    • /
    • 2022
  • Household refrigerator cabinets must undergo cyclic testing at -20 ℃ and 65 ℃ for quality control (QC) after their production is complete. These cabinets were assembled from different materials, including acrylonitrile butadiene styrene (ABS), polyurethane (PU) foam, and steel plates. However, different thermal expansion values could be observed owing to differences in the mechanical properties of the materials. In this study, a technique to predict delamination on a refrigerator wall caused by thermal deformation was developed. The mechanical properties of ABS and PU foams were tested, theload factors causing delamination were analyzed, delamination was observed using a high-speed camera, and comparison and verification in terms of stress and strain were performed using a finite element model (FEM). The results indicated that the delamination phenomenon of a refrigerator wall can be defined in two cases. A method for predicting and evaluating delamination was established and applied in an actual refrigerator. To determine the effect of temperature changes on the refrigerator, strain measurements were performed at the weak point and the stress was calculated. The results showed that the proposed FEM prediction technique can be used as a basis for virtual testing to replace future QC testing, thus saving time and cost.

Vehicle Detection Algorithm Using Super Resolution Based on Deep Residual Dense Block for Remote Sensing Images (원격 영상에서 심층 잔차 밀집 기반의 초고해상도 기법을 이용한 차량 검출 알고리즘)

  • Oh-Seol Kwon
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.124-131
    • /
    • 2023
  • Object detection techniques are increasingly used to obtain information on physical characteristics or situations of a specific area from remote images. The accuracy of object detection is decreased in remote sensing images with low resolution because the low resolution reduces the amount of detail that can be captured in an image. A single neural network is proposed to joint the super-resolution method and object detection method. The proposed method constructs a deep residual-based network to restore object features in low-resolution images. Moreover, the proposed method is used to improve the performance of object detection by jointing a single network with YOLOv5. The proposed method is experimentally tested using VEDAI data for low-resolution images. The results show that vehicle detection performance improved by 81.38% on mAP@0.5 for VISIBLE data.

A New Association Rule Mining based on Coverage and Exclusion for Network Intrusion Detection (네트워크 침입 탐지를 위한 Coverage와 Exclusion 기반의 새로운 연관 규칙 마이닝)

  • Tae Yeon Kim;KyungHyun Han;Seong Oun Hwang
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.77-87
    • /
    • 2023
  • Applying various association rule mining algorithms to the network intrusion detection task involves two critical issues: too large size of generated rule set which is hard to be utilized for IoT systems and hardness of control of false negative/positive rates. In this research, we propose an association rule mining algorithm based on the newly defined measures called coverage and exclusion. Coverage shows how frequently a pattern is discovered among the transactions of a class and exclusion does how frequently a pattern is not discovered in the transactions of the other classes. We compare our algorithm experimentally with the Apriori algorithm which is the most famous algorithm using the public dataset called KDDcup99. Compared to Apriori, the proposed algorithm reduces the resulting rule set size by up to 93.2 percent while keeping accuracy completely. The proposed algorithm also controls perfectly the false negative/positive rates of the generated rules by parameters. Therefore, network analysts can effectively apply the proposed association rule mining to the network intrusion detection task by solving two issues.

Fundamental Metrology by Counting Single Flux and Single Charge Quanta with Superconducting Circuits

  • Niemeyer, J.
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Transferring single flux quanta across a Josephson junction at an exactly determined rate has made highly precise voltage measurements possible. Making use of self-shunted Nb-based SINIS junctions, programmable fast-switching DC voltage standards with output voltages of up to 10 V were produced. This development is now extended from fundamental DC measurements to the precise determination of AC voltages with arbitrary waveforms. Integrated RSFQ circuits will help to replace expensive semiconductor devices for frequency control and signal coding. Easy-to-handle AC and inexpensive quantum voltmeters of fundamental accuracy would be of interest to industry. In analogy to the development in the flux regime, metallic nanocircuits comprising small-area tunnel junctions and providing the coherent transport of single electrons might play an important role in quantum current metrology. By precise counting of single charges these circuits allow prototypes of quantum standards for electric current and capacitance to be realised. Replacing single electron devices by single Cooper pair circuits, the charge transfer rates and thus the quantum currents could be significantly increased. Recently, the principles of the gate-controlled transfer of individual Cooper pairs in superconducting A1 devices in different electromagnetic environments were demonstrated. The characteristics of these quantum coherent circuits can be improved by replacing the small aluminum tunnel Junctions by niobium junctions. Due to the higher value of the superconducting energy gap ($\Delta_{Nb}$$7\Delta_{Al}$), the characteristic energy and the frequency scales for Nb devices are substantially extended as compared to A1 devices. Although the fabrication of small Nb junctions presents a real challenge, the Nb-based metrological devices will be faster and more accurate in operation. Moreover, the Nb-based Cooper pair electrometer could be coupled to an Nb single Cooper pair qubit which can be beneficial for both, the stability of the qubit and its readout with a large signal-to-noise ratio..

  • PDF

Performance comparison on vocal cords disordered voice discrimination via machine learning methods (기계학습에 의한 후두 장애음성 식별기의 성능 비교)

  • Cheolwoo Jo;Soo-Geun Wang;Ickhwan Kwon
    • Phonetics and Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.35-43
    • /
    • 2022
  • This paper studies how to improve the identification rate of laryngeal disability speech data by convolutional neural network (CNN) and machine learning ensemble learning methods. In general, the number of laryngeal dysfunction speech data is small, so even if identifiers are constructed by statistical methods, the phenomenon caused by overfitting depending on the training method can lead to a decrease the identification rate when exposed to external data. In this work, we try to combine results derived from CNN models and machine learning models with various accuracy in a multi-voting manner to ensure improved classification efficiency compared to the original trained models. The Pusan National University Hospital (PNUH) dataset was used to train and validate algorithms. The dataset contains normal voice and voice data of benign and malignant tumors. In the experiment, an attempt was made to distinguish between normal and benign tumors and malignant tumors. As a result of the experiment, the random forest method was found to be the best ensemble method and showed an identification rate of 85%.

Towards a better understanding of detection properties of different types of plastic scintillator crystals using physical detector and MCNPX code

  • Ayberk Yilmaz;Hatice Yilmaz Alan;Lidya Amon Susam;Baki Akkus;Ghada ALMisned;Taha Batuhan Ilhan;H.O. Tekin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4671-4678
    • /
    • 2022
  • The purpose of this comprehensive research is to observe the impact of scintillator crystal type on entire detection process. For this aim, MCNPX (version 2.6.0) is used for designing of a physical plastic scintillation detector available in our laboratory. The modelled detector structure is validated using previous studies in the literature. Next, different types of plastic scintillation crystals were assessed in the same geometry. Several fundamental detector properties are determined for six different plastic scintillation crystals. Additionally, the deposited energy quantities were computed using the MCNPX code. Although six scintillation crystals have comparable compositions, the findings clearly indicate that the crystal composed of PVT 80% + PPO 20% has superior counting and detecting characteristics when compared to the other crystals investigated. Moreover, it is observed that the highest deposited energy amount, which is a result of the highest collision number in the crystal volume, corresponds to a PVT 80% + PPO 20% crystal. Despite the fact that plastic detector crystals have similar chemical structures, this study found that performing advanced Monte Carlo simulations on the detection discrepancies within the structures can aid in the development of the most effective spectroscopy procedures by ensuring maximum efficiency prior to and during use.

Electro-optical characteristic analysis of liquid crystal cell using UV-treated self assembled monolayer (UV 처리된 자기 조립 단분자막을 사용한 액정 셀의 전기광학특성 분석)

  • Chan-Woo Oh;Hong-Gyu Park
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.2
    • /
    • pp.109-115
    • /
    • 2023
  • In this paper, we demonstrated the orientation characteristics of liquid crystals using UV-treated FSAM as alignment layer. Moreover we confirmed the FSAM properties before and after UV treatment on indium tin oxide (ITO) glass substrates using physicochemical analysis. The hydrophobic property of the FSAM surface is change to hydrophilic through UV treatment. After UV treatment the LC molecules also were uniformly and horizontally aligned on the FSAM surfaces and the pretilt angle was obviously changed 90° degrees to 0° degrees. EO characteristic of TN cell which was fabricated with UV-treated FSAM was faster response time compare to conventional PI layer. The FSAM before and after UV treatment has a superior application potential as the LC alignment layer for LCD, potentially replacing the conventional polyimide layer.

Application Development and Type Test for Smart Inverter Based on IEEE 1547-2018 Utilizing Power HILS (Power HILS를 활용한 IEEE 1547-2018 기반 스마트 인버터의 기술개발 및 형식시험 연구)

  • Shin, Danbi;Kang, Moses;Lee, Hyuna;Hong, Seonri;Yoon, Gihwan;Baek, Jongbok
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • In order to secure the reliability of the power system and to increase the penetration level of distributed energy resources (DERs), requirements such as IEEE 1547 have been revised to strengthen the grid connection standards for DER. This paper proposes a control scheme for smart inverter functions based on IEEE 1547-2018 that satisfy these standards, and introduces a power HILS-based test platform built for verification of smart inverter. Among the smart inverter functions, Volt-var and Frequency-watt allow the curve to be set from the upper level to comply with the interoperability and operation time of enable signals for each function are controlled by references from the upper level. According to the requirement, Volt-var and Frequency-watt are performed via power HILS platform and verified through the measurement results that all of the specified type tests were satisfied.