Browse > Article
http://dx.doi.org/10.1016/j.net.2022.07.032

Towards a better understanding of detection properties of different types of plastic scintillator crystals using physical detector and MCNPX code  

Ayberk Yilmaz (Department of Physics, Faculty of Science, Istanbul University)
Hatice Yilmaz Alan (Institute of Nuclear Sciences, Ankara University)
Lidya Amon Susam (Department of Physics, Faculty of Science, Istanbul University)
Baki Akkus (Department of Physics, Faculty of Science, Istanbul University)
Ghada ALMisned (Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University)
Taha Batuhan Ilhan (Yildiz Technical University, Faculty of Electrical and Electronics, Control and Automation Engineering Department)
H.O. Tekin (Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah)
Publication Information
Nuclear Engineering and Technology / v.54, no.12, 2022 , pp. 4671-4678 More about this Journal
Abstract
The purpose of this comprehensive research is to observe the impact of scintillator crystal type on entire detection process. For this aim, MCNPX (version 2.6.0) is used for designing of a physical plastic scintillation detector available in our laboratory. The modelled detector structure is validated using previous studies in the literature. Next, different types of plastic scintillation crystals were assessed in the same geometry. Several fundamental detector properties are determined for six different plastic scintillation crystals. Additionally, the deposited energy quantities were computed using the MCNPX code. Although six scintillation crystals have comparable compositions, the findings clearly indicate that the crystal composed of PVT 80% + PPO 20% has superior counting and detecting characteristics when compared to the other crystals investigated. Moreover, it is observed that the highest deposited energy amount, which is a result of the highest collision number in the crystal volume, corresponds to a PVT 80% + PPO 20% crystal. Despite the fact that plastic detector crystals have similar chemical structures, this study found that performing advanced Monte Carlo simulations on the detection discrepancies within the structures can aid in the development of the most effective spectroscopy procedures by ensuring maximum efficiency prior to and during use.
Keywords
MCNP; Plastic scintillator; Radiation; Polystrene; Detector;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Hart. Alexander, et al., Lead-doped scintillator dosimeters for detection of ultrahigh dose-rate x-rays, Phys. Med. Biol. 67 (2022), 105007.
2 Min. S, et al., Integrated and portable probe based on functional plastic scintillator for detection of radioactive cesium, Appl. Sci. 11 (2021) 5210, https://doi.org/10.3390/app11115210.   DOI
3 V. Villemot, et al., From sintering to particle discrimination: new opportunities in metal-organic frameworks scintillators, Adv. Photonics Res. 3 (2022), 2100259.
4 Alan Proctor, Deconvolving plastic scintillator gamma-ray spectra using particle Swarm optimization, in: IEEE Nuclear Science Symposium and Medical Imaging Conference, 2020, https://doi.org/10.1109/NSS/MIC42677.2020.9507902. NSS/MIC)978-1-7281-7693-2/20/$31.00©2020IEEE.   DOI
5 F. Horst, et al., A.multi-detector experimental setup for the study of space radiation shielding materials: measurement of secondary radiation behind thick shielding and assessment of its radiobiological effect, EPJ Web of Conferences 261 (2022), 03002, https://doi.org/10.1051/epjconf/202226103002, 2022.   DOI
6 Koutaro Yamasoto, Masahiro Tsutsumi, Tetsuya Oishi, Michio Yoshizawa, Makoto Yoshida, CsI(Tl)/plastic phoswich detector enhanced in low-energy gamma-ray detection, Nucl. Instruments Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detect. Assoc. Equip. 550 (2005) 609-615, https://doi.org/10.1016/j.nima.2005.05.054.   DOI
7 Lino Miramonti, A plastic scintillator detector for beta particles, Radiat. Meas. 35 (2002) 347-354, https://doi.org/10.1016/S1350-4487(02)00051-3.   DOI
8 R. Shweikani, G. Raja, A.A. Sawaf, The possibility of using plastic detectors CR39 as UV dosimeters, Radiat. Meas. 35 (2002) 281-285, https://doi.org/10.1016/S1350-4487(02)00055-0.   DOI
9 V. Andreev, J. Cvach, M. Danilov, E. Devitsin, V. Dodonov, G. Eigen, E. Garutti, Yu. Gilitzky, M. Groll, R.-D. Heuer, M. Janata, I. Kacl, V. Korbel, V. Kozlov, H. Meyer, V. Morgunov, S. Nemecek, R. Poschl, I. Polak, A. Raspereza, S. Reiche, V. Rusinov, F. Sefkow, P. Smirnov, A. Terkulov, S. Valkar, J. Weichert, J. Zalesak, A high-granularity plastic scintillator tile hadronic calorimeter with APD readout for a linear collider detector, Nucl. Instruments Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detect. Assoc. Equip. 564 (2006) 144-154, https://doi.org/10.1016/j.nima.2006.04.044.   DOI
10 A.A.R. Da Silva, E.M. Yoshimura, Track analysis system for application in alpha particle detection with plastic detectors, Radiat. Meas. 39 (2005) 621-625, https://doi.org/10.1016/j.radmeas.2004.06.018.   DOI
11 K. Kawagoe, Y. Sugimoto, A. Takeuchi, T. Asakawa, J.P. Done, Y. Fujii, K. Furukawa, F. Kajino, T. Kamon, N. Kanaya, J. Kanzaki, S. Kim, A. Nakagawa, M. Nozaki, R. Oishi, T. Ota, H. Takeda, T. Takeshita, S. Uozumi, Performance of preshower and shower-maximum detectors with a lead/plastic-scintillator calorimeter, Nucl. Instruments Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detect. Assoc. Equip. 487 (2002) 275-290, https://doi.org/10.1016/S0168-9002(01)00890-7.   DOI
12 B.M. Moharram, Lamaze George, M. Elfiki, N. Khalil, Neutron-based analysis of fission rates and ultra-trace concentrations of 235U using gamma spectrometry and CR-39 (plastic track detector), Radiat. Meas. 35 (2002) 113-117, https://doi.org/10.1016/S1350-4487(01)00277-3.   DOI
13 M. Fromm, Light MeV-ions etching studies in a plastic track detector, Radiat. Meas. 40 (2005) 160-169, https://doi.org/10.1016/j.radmeas.2005.04.028.   DOI
14 H.O. Tekin, Fatema T. Ali, Ghada Almisned, Gulfem Susoy, Shams A.M. Issa, Antoaneta Ene, Wiam Elshami, M. Hesham, H. Zakaly, Multiple assessments on the gamma-ray protection properties of niobium-doped borotellurite glasses: a wide range investigation using Monte Carlo simulations, Sci. Technol. Nucl. Installations (2022), 5890896, https://doi.org/10.1155/2022/5890896.   DOI
15 A. Artikov, J. Budagov, I. Chirikov-Zorin, D. Chokheli, M. Lyablin, G. Bellettini, A. Menzione, S. Tokar, N. Giokaris, A. Manousakis-Katsikakis, Properties of the Ukraine polystyrene-based plastic scintillator UPS 923A, Nucl. Instruments Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detect. Assoc. Equip. 555 (2005) 125-131, https://doi.org/10.1016/j.nima.2005.09.021.   DOI
16 RSICC Computer Code Collection, MCNPX user's manual version 2.4.0. MonteCarlo N-Particle Transport Code System for Multiple and High Energy Applications, 2002.
17 H.O. Tekin, Ghada ALMisned, Shams A.M. Issa, Hesham M.H. Zakaly, A rapid and direct method for half value layer calculations for nuclear safety studies using MCNPX Monte Carlo code, Nucl. Eng. Technol. (2022), https://doi.org/10.1016/j.net.2022.03.037. Available Online 29 March 2022.   DOI
18 Aylin M. Deliormanli, Mertcan Ensoylu, A. Shams, M. Issa, Y.S. Rammah, Ghada ALMisned, H.O. Tekin, A thorough examination of gadolinium (III)-containing silicate bioactive glasses: synthesis, physical, mechanical, elastic and radiation attenuation properties, Appl. Phys. A 128 (2022) 266, https://doi.org/10.1007/s00339-022-05408-0.   DOI
19 W. Elshami, H.O. Tekin, Shams A.M. Issa, Mohamed M. Abuzaid, Hesham M. Zakaly, Bashar Issa, Antoaneta Ene, Impact of eye and breast shielding on organ doses during the cervical spine radiography: design and validation of MIRD computational phantom, Front. Public Health (2021), https://doi.org/10.3389/fpubh.2021.751577. Received: 01 Aug 2021; Accepted: 27 Sep. 2021.   DOI
20 Ghada ALMisned, M. Hesham, H. Zakaly, Shams A.M. Issa, Antoaneta Ene, Gokhan Kilic, Omemh Bawazeer, Albandari Almatar, Dalal Shamsi, Elaf Rabaa, Zuhal Sideig, H.O. Tekin, Gamma-ray protection properties of bismuth-silicate glasses against some diagnostic nuclear medicine radioisotopes: a comprehensive study, Materials 14 (2021) 6668, https://doi.org/10.3390/ma14216668.   DOI
21 Ghada ALMisned, Wiam Elshami, A. Shams, M. Issa, G. Susoy, H.M.H. Zakaly, M. Algethami, Y.S. Rammah, A. Ene, S.A. Al-Ghamdi, A.A. Ibraheem, H.O. Tekin, Enhancement of gamma-ray shielding properties in cobalt-doped heavy metal borate glasses: the role of lanthanum oxide reinforcement, Materials 14 (2021) 7703, https://doi.org/10.3390/ma14247703.   DOI
22 H.O. Tekin, Ghada ALMisned, Shams A.M. Issa, Emel Serdaroglu Kasikci, Mahreen Arooj, Anoaneta Ene, M.S. Al-Buriahi, Muhsin Konuk, M. Hesham, H. Zakaly, Molecular polar surface area, total solvent accessible surface area (SASA), heat of formation and gamma ray attenuation properties of some flavonoids, Front. Phys. 10 (2022), 838725, https://doi.org/10.3389/fphy.2022.838725.   DOI
23 Kelly D. Rakes, Master Thesis, Evaluating the Response of Polyvinyl Toluene Scintillators Used in Portal Detectors, Air Force Institute of Technology, Air University, 2008. AFIT/GNE/ENP/08-M04.
24 Avneet Sood, R.A. Forster, Bryce J. Adams, Morgan C. White, Verification of the pulse height tally in MCNP 5.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 213, 2004, pp. 167-171, https://doi.org/10.1016/S0168-583X(03)01598-2   DOI
25 P. Lecoq, Scintillation detectors for charged particles and photons, in: C. Fabjan, H. Schopper (Eds.), Particle Physics Reference Library, Springer, Cham, 2020, https://doi.org/10.1007/978-3-030-35318-6_3.   DOI
26 Matthieu Hamel, Plastic scintillators chemistry and applications. https://doi.org/10.1007/978-3-030-73488-6.   DOI
27 S. Min, H. Kang, et al., Integrated and portable probe based on functional plastic scintillator for detection of radioactive cesium, Appl. Sci. 11 (2021) 5210.
28 Branislav Stribrnsky, et al., Energy calibration of plastic scintillator detector, AIP Conf. Proc. 2131 (2019), 020044, https://doi.org/10.1063/1.5119497.   DOI
29 M.G. Schorr, F.L. Torney, Phys. Rev. 80 (3) (1950) 474.
30 Sujung Min, et al., Optimization of plastic scintillator for detection of gamma-rays: simulation and experimental study, Chemosensors 9 (2021) 239, https://doi.org/10.3390/chemosensors9090239, 2021.   DOI
31 M. Hamel, et al., Plastic Scintillators Modifications for a Selective Radiation Detection, 2019.
32 H.R. Kang, et al., Preliminary studies of perovskite-loaded plastic scintillator prototypes for radioactive strontium detection, Chemosensors 9 (2021) 53.
33 J.M. Park, et al., Scintillation properties of quantum-dot doped styrene based plastic scintillators, J. Lumin. 146 (2014) 157-161.   DOI
34 J.S. Nam, et al., Performance evaluation of a plastic scintillator for making a in-situ beta detector, New Phy. Sae Mulli 67 (2017) 1080-1085.   DOI
35 Cheol HoLee, et al., Characteristics of plastic scintillators fabricated by a polymerization reaction, Nucl. Eng. Technol. 49 (Issue 3) (April 2017) 592-597.   DOI
36 Yuki Araya, et al., Enhanced detection efficiency of plastic scintillators upon incorporation of zirconia nanoparticles, Sens. Mater. 27 (No. 3) (2015) 255-261.
37 C. Kim, et al., Simulation Study of a Plastic Scintillator for an Electrical Personal Dosimeter, IEEE, 2013, 978-1-4799-0534-8/13/$31.00 ©.
38 Rogers, T and et al, Synthesis of Luminescent Nanoparticle Embedded Polymer Nanocomposites for Scintillation Applications, DOI: 10.1557/opl.2011.123.   DOI
39 Zafar Yasin, Florin Negoita, Sana Tabbassum, et al., Monte Carlo simulations and measurements for efficiency determination of lead shielded plastic scintillator detectors, https://doi.org/10.1063/1.5017442.   DOI
40 Abdullah Mohammad Shehada, et al., MCNP simulations for silver-plastic scintillator detector for mono-energy neutrons 2.5 and 14 MeV. ISSN 1547-4771, Phys. Part. Nuclei Lett. 18 (7) (2021) 786-790.   DOI
41 Patrick L. Feng, et al., Distance dependent quenching and gamma-ray spectroscopy in tin-loaded polystyrene scintillators, IEEE Transact. Nucl. Sci. 63 (1) (FEBRUARY 2016).
42 Jing Sun, Robin P. Gardner, Optimization of the steady neutron source technique for absorption cross section measurement by using an 124SbeBe neutron source, Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 213 (2004) 22-28, https://doi.org/10.1016/S0168-583X(03)01527-1.   DOI
43 A. Lim, et al., Plastic scintillators with efficient light output and pulse shape discrimination produced via photoinitiated polymerization, J. Appl. Polym. Sci. (2018), https://doi.org/10.1002/app.47381.   DOI
44 Henok A. Yemam et al. Highly Soluble P-Terphenyl and Fluorene Derivatives as Efficient Dopants in Plastic Scintillators for Sensitive Nuclear Material Detection. DOI: 10.1002/chem.201700877.   DOI