• 제목/요약/키워드: Electronic packaging technology

검색결과 297건 처리시간 0.026초

Highly Reliable Solder ACFs FOB (Flex-on-Board) Interconnection Using Ultrasonic Bonding

  • Kim, Yoo-Sun;Zhang, Shuye;Paik, Kyung-Wook
    • 마이크로전자및패키징학회지
    • /
    • 제22권1호
    • /
    • pp.35-41
    • /
    • 2015
  • In this study, in order to improve the reliability of ACF interconnections, solder ACF joints were investigated interms of solder joint morphology and solder wetting areas, and evaluated the electrical properties of Flex-on-Board (FOB) interconncections. Solder ACF joints with the ultrasonic bonding method showed excellent solder wetting by broken solder oxide layers on solder surfaces compared with solder joints with remaining solder oxide layer bonded by the conventional thermo-compression (TC) bonding method. When higher target temperature was used, Sn58Bi solder joints showed concave shape due to lower degree of cure of resin at solder MP by higher heating rate. ACFs with epoxy resins and SAC305 solders showed lower degree of resin cure at solder MP due to the slow curing rate resulting in concave shaped solder joints. In terms of solder wetting area, solder ACFs with $25-32{\mu}m$ diameters and 30-40 wt% showed highest wetted solder areas. Solder ACF joints with the concave shape and the highest wetting area showed lower contact resistances and higher reliability in PCT results than conventional ACF joints. These results indicate that solder morphologies and wetting areas of solder ACF joints can be controlled by adjustment of bonding conditions and material properties of solder and polymer resin to improve reliability of ACF joints.

Characterization of Stiffness Coefficients of Silicon Versus Temperature using "Poisson's Rati" Measurements

  • Cho, Chun-Hyung;Cha, Ho-Young;Sung, Hyuk-Kee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.153-158
    • /
    • 2016
  • The elastic material constants, stiffness constants ($c_{11}$, $c_{12}$, and $c_{44}$), are three unique coefficients that establish the relation between stress and strain. Accurate knowledge of mechanical properties and the stiffness coefficients for silicon is required for design of Micro-Electro-Mechanical Systems (MEMS) devices for proper modeling of stress and strain in electronic packaging. In this work, the stiffness coefficients for silicon as a function of temperature from $-150^{\circ}C$ to $+25^{\circ}C$ have been extracted by using the experimental measurements of Poisson's ratio (${\nu}$) of silicon in several directions.

진동세관형 히트파이프를 이용한 전자기기 냉각에 대한 연구 (Development of Cooling System for Electronic Devices using Oscillating Capillary Tube Heat Pipe)

  • 김종수;하수정
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.436-442
    • /
    • 2005
  • Rapid development of electronic technology requires small size, high density packaging and high power of electronic devices. In this paper, characteristics on oscillating heat pipe according to operating conditions (environment temperature, charging ratio of working fluid, inclination) based on experimental study was investigated From the experimental results $25^{\circ}C$(environment temperature) R-141b (working fluid) $40\%$ (charging ratio) was best performace at others of inclination angle and the top heating mode of OCHP performed $80\%$ efficiency of the bottom heating mode.

유연신축성 전자 디바이스를 위한 열계면 소재 연구동향 (Research Trends in Thermal Interface Materials for Flexible and Stretchable Electronic Device)

  • 박영주;정건주;김광석
    • 마이크로전자및패키징학회지
    • /
    • 제31권1호
    • /
    • pp.7-15
    • /
    • 2024
  • 유연신축성 전자 디바이스의 다기능화, 소형화 및 고출력화 추세에 따라 우수한 열 전달 특성을 갖춘 재료나 구조가 이슈로 부상하고 있다. 기존의 열계면 소재는 급격한 구부림, 비틀림, 신축 등을 겪어야 하는 유연신축성 전자 디바이스의 방열 요구성능을 충족시키지 못한다. 이러한 문제를 해결하기 위하여 높은 열전도성과 신축성을 동시에 갖는 열계면 소재 개발이 요구된다. 본 논문에서는 Liquid metal, Carbon, Ceramic 기반 신축성 열계면 소재의 연구동향을 살펴보고 열적, 기계적 특성 향상을 위한 효과적 전략을 알아보고자 한다.

Hands-On Experience-Based Comprehensive Curriculum for Microelectronics Manufacturing Engineering Education

  • Ha, Taemin;Hong, Sang Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권5호
    • /
    • pp.280-288
    • /
    • 2016
  • Microelectronic product consumers may already be expecting another paradigm shift with smarter phones over smart phones, but the current status of microelectronic manufacturing engineering education (MMEE) in universities hardly makes up the pace for such a fast moving technology paradigm shift. The purpose of MMEE is to educate four-year university graduates to work in the microelectronics industry with up-to-date knowledge and self-motivation. In this paper, we present a comprehensive curriculum for a four-year university degree program in the area of microelectronics manufacturing. Three hands-on experienced-based courses are proposed, along with a methodology for undergraduate students to acquire hands-on experience, towards integrated circuits (ICs) design, fabrication and packaging, are presented in consideration of manufacturing engineering education. Semiconductor device and circuit design course for junior level is designed to cover how designed circuits progress to micro-fabrication by practicing full customization of the layout of digital circuits. Hands-on experienced-based semiconductor fabrication courses are composed to enhance students’ motivation to participate in self-motivated semiconductor fab activities by performing a series of collaborations. Finally, the Microelectronics Packaging course provides greater possibilities of mastered skillsets in the area of microelectronics manufacturing with the fabrication of printed circuit boards (PCBs) and board level assembly for microprocessor applications. The evaluation of the presented comprehensive curriculum was performed with a students’ survey. All the students responded with “Strongly Agree” or “Agree” for the manufacturing related courses. Through the development and application of the presented curriculum for the past six years, we are convinced that students’ confidence in obtaining their desired jobs or choosing higher degrees in the area of microelectronics manufacturing was increased. We confirmed that the hypothesis on the inclusion of handson experience-based courses for MMEE is beneficial to enhancing the motivation for learning.

조성 및 실록산 분자 구조에 따른 전자 패키징용 에폭시 기반 실록산/실리카 복합체의 물성 변화 분석 (Epoxy-Based Siloxane/Silica Composites for Electronic Packaging by Composition and Molecular Structure of Siloxane, and Analysis of Changes in Properties)

  • 장준호;강동준;임현균
    • 한국분말재료학회지
    • /
    • 제30권4호
    • /
    • pp.346-355
    • /
    • 2023
  • Epoxy-based composites find extensive application in electronic packaging due to their excellent processability and insulation properties. However, conventional epoxy-based polymers exhibit limitations in terms of thermal properties and insulation performance. In this study, we develop epoxy-based siloxane/silica composites that enhance the thermal, mechanical, and insulating properties of epoxy resins. This is achieved by employing a sol-gel-synthesized siloxane hybrid and spherical fused silica particles. Herein, we fabricate two types of epoxy-based siloxane/silica composites with different siloxane molecular structures (branched and linear siloxane networks) and investigate the changes in their properties for different compositions (with or without silica particles) and siloxane structures. The presence of a branched siloxane structure results in hardness and low insulating properties, while a linear siloxane structure yields softness and highly insulating properties. Both types of epoxy-based siloxane/silica composites exhibit high thermal stability and low thermal expansion. These properties are considerably improved by incorporating silica particles. We expect that our developed epoxy-based composites to hold significant potential as advanced electronic packaging materials, offering high-performance and robustness.

IoT 모듈 패키지 디자인 최적화 및 드론에서의 낙하해석 연구 (Study of IoT Module Package Design Optimization for Drop Testing by Drone)

  • 조은솔;김구성
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.63-67
    • /
    • 2021
  • 이번 논문에선 육안으로 확인하기 어려운 곳에 남아있는 불씨들을 효율적으로 감지하기 위해 CO2와 온도 변화를 감지하는 기능을 탑재한 잔불 감지용 IoT 모듈을 개발하여 이를 보호하는 패키지를 유한요소해석을 사용하여 최적화하였다. 개발된 모듈은 불씨의 특성을 고려하여 저전력 원거리 통신이 가능한 LoRa 기술을 적용하여 제작하였다. 제작된 모듈을 보호하기 위한 패키지 디자인을 고안하여 낙하 시 발생하는 응력에 대해 비교 분석하였다. 그 결과, Model C에서 가장 작은 응력이 발생하였다. 또한 패키지의 모듈 장착부분에 응력 집중이 예측된 타 모델들과 달리 날개 부분에서 응력이 집중 현상이 예측되어 내부 모듈을 보호하기에 적합하다 판단해 이를 적용한 패키지를 제작하였다.

미세 비아홀 펀칭 공정 중 이종 재료 두께에 따른 버 생성 (Thickness Effect of Double Layered Sheet on Burr Formation during Micro-Via Hole Punching Process)

  • 신승용;임성한;주병윤;오수익
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.65-71
    • /
    • 2004
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole qualify is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene terephthalate) one. In this paper we found the correlation between hole quality and process condition such as PET thickness and ceramic thickness. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

반도체 패키징용 금-코팅된 은 와이어의 부식특성 (Corrosion Characteristics of Gold-Coated Silver Wire for Semiconductor Packaging)

  • 홍원식;김미송;김상엽;전성민;문정탁;김영식
    • Corrosion Science and Technology
    • /
    • 제20권5호
    • /
    • pp.289-294
    • /
    • 2021
  • In this study, after measuring polarization characteristics of 97.3 wt% Ag, Au-Coated 97.3 wt% Ag (ACA) and 100 wt% Au wires in 1 wt% H2SO4 and 1 wt% HCl electrolytes at 25 ℃, corrosion rate and corrosion characteristics were comparatively analyzed. Comparing corrosion potential (ECORR) values in sulfuric acid solution, ACA wire had more than six times higher ECORR value than Au wire. Thus, it seems possible to use a broad applied voltage range of bonding wire for semiconductor packaging which ACA wire could be substituted for the Au wire. However, since the ECORR value of ACA wire was three times lower than that of the Au wire in a hydrochloric acid solution, it was judged that the use range of the applied voltage and current of the bonding wire should be considered. In hydrochloric acid solution, 97.3 wt% Ag wire showed the highest corrosion rate, while ACA and Au showed similar corrosion rates. Additionally, in the case of sulfuric acid solution, all three types showed lower corrosion rates than those under the hydrochloric acid solution environment. The corrosion rate was higher in the order of 97.3 wt% Ag > ACA > 100 wt% Au wires.