DOI QR코드

DOI QR Code

Research Trends in Thermal Interface Materials for Flexible and Stretchable Electronic Device

유연신축성 전자 디바이스를 위한 열계면 소재 연구동향

  • Young-Joo Park (Carbon & Light Materials Group, Korea Institute of Industrial Technology) ;
  • Geon-Joo Jeong (Carbon & Light Materials Group, Korea Institute of Industrial Technology) ;
  • Kwang-Seok Kim (Carbon & Light Materials Group, Korea Institute of Industrial Technology)
  • 박영주 (한국생산기술연구원 탄소경량소재그룹) ;
  • 정건주 (한국생산기술연구원 탄소경량소재그룹) ;
  • 김광석 (한국생산기술연구원 탄소경량소재그룹)
  • Received : 2024.03.24
  • Accepted : 2024.03.30
  • Published : 2024.03.30

Abstract

In the trend of the multi-functionalization, miniaturization, and increased power output trends of flexible and stretchable electronic devices, the development of materials or structures with superior heat transfer characteristics has become a pressing issue. Traditional thermal interface materials (TIM) fail to meet the heat dissipation requirements of flexible and stretchable electronic devices, which must endure rapid bending, twisting, and stretching. To address this challenge, there is a demand for the development of TIM that simultaneously possesses high thermal conductivity and stretchability. This paper examines the research trends of liquid metal, carbon, and ceramic-based stretchable thermal interface materials and explores effective strategies for enhancing their thermal and mechanical properties.

유연신축성 전자 디바이스의 다기능화, 소형화 및 고출력화 추세에 따라 우수한 열 전달 특성을 갖춘 재료나 구조가 이슈로 부상하고 있다. 기존의 열계면 소재는 급격한 구부림, 비틀림, 신축 등을 겪어야 하는 유연신축성 전자 디바이스의 방열 요구성능을 충족시키지 못한다. 이러한 문제를 해결하기 위하여 높은 열전도성과 신축성을 동시에 갖는 열계면 소재 개발이 요구된다. 본 논문에서는 Liquid metal, Carbon, Ceramic 기반 신축성 열계면 소재의 연구동향을 살펴보고 열적, 기계적 특성 향상을 위한 효과적 전략을 알아보고자 한다.

Keywords

References

  1. R. James, "The Future of the High-Performance Semiconductor Industry and Design", Proc. 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 65, 32-35, IEEE (2022).
  2. C. C. Wang, Y. C. Huang, T. K. Chang, and Y. Lin, "A new semiconductor package design flow and platform applied on high density fan-out chip", Proc. 2021 71st Electronic Components and Technology Conference (ECTC), San Diego, 112-117, IEEE (2021).
  3. P. Y. Lin, M. C. Yew, S. S. Yeh, S. M. Chen, C. H. Lin, C. S. Chen, and S. P. Jeng, "Reliability Performance of Advanced Organic Interposer (CoWoSR-R) Packages", Proc. 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, 723-728, IEEE (2021).
  4. A. R. A. Rahman, and N. A. Nayan, "Critical challenges and solutions for device miniaturization in integrated circuit packaging technology", J. Eng. Appl. Sci., 13(15), 6025-6032 (2019).
  5. J. Hansson, T. M. Nilsson, L. Ye and J. Liu, "Novel nanostructured thermal interface materials: a review", International Materials Reviews, 63(1), 22 (2018).
  6. R. Mahajan, Z. Qian, R. S. Viswanath, S. Srinivasan, K. Aygn, W. L. Jen, and A. Dhall, "Embedded multidie interconnect bridge A localized, high density multichip packaging interconnect", IEEE Trans. Compon. Packaging Manuf. Technol., 9(10), 1952-1962 (2019).
  7. K. M. Razeeb, E. Dalton, G. L. W. Cross and A. J. Robinson, "Present and future thermal interface materials for electronic devices", International Materials Reviews, 63(1), 1-21 (2018).
  8. R. Bahru, M. F. M. A. Zamri, A. H. Shamsuddin, N. Shaari and M. A. Mohamed, "A review of thermal interface material fabrication method toward enhancing heat dissipation", International Journal of Energy Research, 45(3), 3548-3568 (2021).
  9. R. Viswanath, V. Wakharkar, A. Watwe and V. Lebonheur, "Thermal performance challenges from silicon to systems", Intel Technology, 4(3), 1 (2000).
  10. L. Maguire, M. Behnia and G. Morrison, "Systematic evaluation of thermal interface materials-a case study in high power amplifier design", Microelectronics Reliability, 45(3-4), 711-725 (2005).
  11. J. A. Rogers, T. Someya and Y. Huang, "Materials and mechanics for stretchable electronics", Science, 327(5973), 1603 (2010).
  12. J. H. Lee, J. Y. Song, S. M. Kim, Y. J. Kim and A. Y. Park, "Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly", J. Microelectron. Packag. Soc., 26(2), 31 (2019).
  13. T. S. Oh, "Analysis on Effective Elastic Modulus and Deformation Behavior of a Stiffness-Gradient Stretchable Electronic Package with the Island-Bridge Structure", J. Microelectron. Packag. Soc., 26(4), 39-46 (2019).
  14. D. W. Kim, M. Kong and U. Jeong, "Interface design for stretchable electronic devices", Advanced Science, 8(8), 2004170 (2021).
  15. H. Ma, B. Gao, M. Wang, Z. Yuan, J. Shen, J. Zhao and Y. Feng, "Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: A review", Journal of Materials Science, 56, 1064-1086 (2021).
  16. J. A. Rogers, T. Someya and Y. Huang, "Materials and mechanics for stretchable electronics", Science, 327(5973), 1603-1607 (2010).
  17. H. Zhu, X. Wang, J. Liang, H. Lv, H. Tong, L. Ma, Y. Hu, G. Zhu, T. Zhang, Z. Tie, Z. Liu, Q. Li, L. Chen, J. Liu and Z. Jin "Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites", Advanced Functional Materials, 27(21), 1606604 (2017).
  18. X. Wang, C. Lu and W. Rao, "Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications", Applied Thermal Engineering, 192, 116937 (2021).
  19. Y. Wang, Z. Zhou, J. Zhou, L. Shao, Y. Wang and Y. Deng, "High-performance Stretchable Organic Thermoelectric Generator via Rational Thermal Interface Design for Wearable Electronics", Advanced Energy Materials, 12(1), 2102835 (2022).
  20. S. N. Hapuarachchi, J. Y. Nerkar, K. C. Wasalathilake, H. Chen, S. Zhang, A. P. O'Mullane and C. Yan, "Utilizing Room Temperature Liquid Metals for Mechanically Robust Silicon Anodes in Lithium-Ion Batteries", Batteries& Supercaps, 1(3), 122-128 (2018).
  21. J. H. Bae and Y. C. Sohn, "Study on the Interfacial Reactions between Gallium and Cu/Au Multi-layer Metallization", J. Microelectron. Packag. Soc., 29(2), 73 (2022).
  22. S. H. Jeong, S. Chen, J. Huo, E. K. Gamstedt, J. Liu, S. Zhang, Z. Zhang, K. Hjort and Z. Wu, "Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment", Scientific Reports, 5(1), 18257 (2015).
  23. D. Zrnic and D. Swatik "On the resistivity and surface tension of the eutectic alloy of gallium and indium", Journal of the Less Common Metals, 18(1), 67-68 (1969).
  24. M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz and G. M. Whitesides, "Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature", Advanced Functional Materials, 18(7), 1097 (2008).
  25. M. D. Dickey, "Emerging applications of liquid metals featuring surface oxides", ACS Applied Materials & Interfaces, 6(21), 18369 (2014).
  26. R. F. Hill and P. H. Supancic, "Thermal conductivity of platelet-filled polymer composites", Journal of the American Ceramic Society, 85(4), 851-857 (2002).
  27. K. Huang, W. Qiu, M. Ou, X. Liu, Z. Liao and S. Chu, "An anti-leakage liquid metal thermal interface material", RSC Adv., 10(32), 18824 (2020).
  28. A. T. Haque, R. Tutika, R. L. Byrum and M. D. Bartlett, "Programmable liquid metal microstructures for multifunctional soft thermal composites", Adv. Funct. Mater., 30(25), 2000832 (2020).
  29. M. D. Dickey, "Stretchable and soft electronics using liquid metals." Advanced Materials, 29(27), 1606425 (2017).
  30. Y. Fan, Y. Wang and J. Qiu, "Elastomeric thermal interface materials with high through-plane thermal conductivity by 3D printing.", Advanced Materials, 26(33), 5857 (2014).
  31. Q. Wu, W. Li, C. Liu, Y. Xu, G. Li, H. Zhang, J. Huang and J. Miao , "Carbon fiber reinforced elastomer thermal interface materials for spacecraft", Carbon, 187, 432 (2022).
  32. J. Ma, T. Shang, L. Ren, Y. Yao, T. Zhang , J. Xie, B. Zhang, X. Zeng, R. Sun, J.B. Xu and C. P. Wong, "Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material", Chemical Engineering Journal, 380, 122550 (2020).
  33. J. Li, Z. Ye, P. Mo, Y. Pang, E. Gao, C. Zhang, G. Du, R. Sun and X. Zeng, "Compliance-tunable thermal interface materials based on vertically oriented carbon fiber arrays for high-performance thermal management", Composites Science and Technology, 234, 109948 (2023).
  34. X. Liu, Z. Wang, J. Sun, Z. Zhao, S. Zhan, Y. Guo, H. Zhou, W. Liu, J. Wang and T. Zhao, "Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities", Composites Science and Technology, 202, 108558 (2021).
  35. H. He, Y. Zhang, X. Zeng, Z. Ye, C. Zhang, T. Liang, J. Li, Q. Hu and P. Zhang, "Thermally conductive and stretchable thermal interface materials prepared via vertical orientation of flake graphite", Composites Communications, 202, 100795 (2021).
  36. M. Tayebi, M. Tayebi, M. Rajaee, V. Ghafarnia and A. M. Rizi, "Improvement of thermal properties of Al/Cu/SiC composites by tailoring the reinforcement microstructure and comparison to thermoelastic models", Journal of Alloys and Compounds, 853, 156794 (2021).
  37. J. Chen, X. Cui, Y. Zhu, W. Jiang and K. Sui, "Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of π-π interactions and dipole-dipole interactions", Carbon, 114, 441 (2017).
  38. W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan, L. Lv, N. Jiang, Y. Wang and C. L, "Metal-level thermally conductive yet soft graphene thermal interface materials", ACS Nano, 13(10), 11561 (2019).
  39. M. Wang, T. Li, Y. Yao, H. Lu, Q. Li, M. Chen and Q. Li, "Wafer-scale transfer of vertically aligned carbon nanotube arrays", Journal of the American Chemical Society, 136(52), 18156 (2014).
  40. W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi and R. S. Ruoff, "Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition", Nano Letters, 10(5), 1645 (2010).
  41. Y. H. Yoon, S. G. Kwon, H. J. Yoo, Y. H. Shin, J. Y. Choi and H. Y. Lee, "Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors", ACS Nano, 8(5), 4580 (2014).
  42. O. H. Kwon, T. Ha, D. G. Kim, B. G. Kim, Y. S. Kim, T. J. Shin, W. G. Koh and H. S. Lim, "Anisotropy-driven high thermal conductivity in stretchable poly (vinyl alcohol)/hexagonal boron nitride nanohybrid films", ACS Applied Materials & Interfaces, 10(40), 34625 (2018).
  43. C. H. Kim, H. T. Kim and S. T. Lee, "High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate", J. Microelectron. Packag. Soc., 25(4), 95 (2018).
  44. W. L. Song, P. Wang, L. Cao, A. Anderson, M. J. Meziani, A. J. Farr and Y. P. Sun, "Polymer/boron nitride nanocomposite materials for superior thermal transport performance", Angewandte Chemie, 124(26), 6604 (2012).
  45. Y. Cui, Z. Qin, H. Wu, M. Li and Y. Hu, "Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management", Nature Communications, 12(1), 1284 (2021).
  46. F. Tian, B. Song, X. Chen, N. K. Ravichandran, Y. Lv, K. Chen, J. Y. Kim, Y. Zhou and Z. Ren, "Unusual high thermal conductivity in boron arsenide bulk crystals", Science, 361(6402), 582 (2018).
  47. C. Dames, "Ultrahigh thermal conductivity confirmed in boron arsenide", Science, 361(6402), 549 (2018).
  48. J. S. Kang, M. Li, H. Wu, H. Nguyen and Y. Hu, "Experimental observation of high thermal conductivity in boron arsenide", Science, 361(6402), 575 (2018).
  49. J. S. Kang, M. Li, H. Wu, H. Nguyen and Y. Hu, "Basic physical properties of cubic boron arsenide", Applied Physics Letters, 115(12), 122103 (2019).