DOI QR코드

DOI QR Code

Epoxy-Based Siloxane/Silica Composites for Electronic Packaging by Composition and Molecular Structure of Siloxane, and Analysis of Changes in Properties

조성 및 실록산 분자 구조에 따른 전자 패키징용 에폭시 기반 실록산/실리카 복합체의 물성 변화 분석

  • Junho Jang (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Dong Jun Kang (Insulation Materials Research Center, Electrical Materials Research Division, Electrotechnology Research Institute (KERI)) ;
  • Hyeon-Gyun Im (Insulation Materials Research Center, Electrical Materials Research Division, Electrotechnology Research Institute (KERI))
  • 장준호 (한국과학기술원 신소재공학과) ;
  • 강동준 (한국전기연구원 전기재료연구본부 절연재료연구센터) ;
  • 임현균 (한국전기연구원 전기재료연구본부 절연재료연구센터)
  • Received : 2023.08.10
  • Accepted : 2023.08.18
  • Published : 2023.08.28

Abstract

Epoxy-based composites find extensive application in electronic packaging due to their excellent processability and insulation properties. However, conventional epoxy-based polymers exhibit limitations in terms of thermal properties and insulation performance. In this study, we develop epoxy-based siloxane/silica composites that enhance the thermal, mechanical, and insulating properties of epoxy resins. This is achieved by employing a sol-gel-synthesized siloxane hybrid and spherical fused silica particles. Herein, we fabricate two types of epoxy-based siloxane/silica composites with different siloxane molecular structures (branched and linear siloxane networks) and investigate the changes in their properties for different compositions (with or without silica particles) and siloxane structures. The presence of a branched siloxane structure results in hardness and low insulating properties, while a linear siloxane structure yields softness and highly insulating properties. Both types of epoxy-based siloxane/silica composites exhibit high thermal stability and low thermal expansion. These properties are considerably improved by incorporating silica particles. We expect that our developed epoxy-based composites to hold significant potential as advanced electronic packaging materials, offering high-performance and robustness.

Keywords

Acknowledgement

본 연구는 한국전기연구원 기본연구사업(23A01001), 국가과학기술연구회 선행융합연구사업(22A02180) 및 한국연구재단의 세종과학펠로우쉽(NRF-2022R1C1C2003017)의 지원을 받아 수행하였다.

References

  1. J. Jang, H.-G. Im, D. Lim and B.-S. Bae: Compos. Sci. Technol., 201 (2021) 108527.
  2. D. J. Kang, G. U. Park, H. Y. Park and H.-G. Im: Compos. Sci. Technol., 144 (2017) 107.
  3. H. Lee, Y. Lee, S. W. Lee, S.-M. Kang, Y. H. Kim, W. Jo, T.-S. Kim, J. Jang and B.-S. Bae: Compos. Part B, 225 (2021) 109313. https://doi.org/10.1016/j.compositesb.2021.109313
  4. J. Kim, J. Park, Y.-G. Park, E. Cha, M. Ku, H. S. An, K.-P. Lee, M.-I. Huh, J. Kim, T.-S. Kim, D. W. Kim, H. K. Kim and J.-U. Park: Nat. Biomed. Eng., 5 (2021) 772.
  5. J. Park, D. B. Ahn, J. Kim, E. Cha, B.-S. Bae, S.-Y. Lee and J.-U. Park: Sci. Adv., 5 (2019) eaay0764.
  6. M. Ku, J. C. Hwang, B. Oh and J.-U. Park: Adv. Intell. Syst., 2 (2020) 1900144.
  7. H. Yang, X. Yao, Z. Zheng, L. Gong, L. Yuan, Y. Yuan and Y. Liu: Compos. Sci. Technol., 167 (2018) 371.
  8. Y.-J. Wan, G. Li, Y.-M. Yao, X.-L. Zeng, P.-L. Zhu and R. Sun: Compos. Commun., 19 (2020) 154.
  9. H. He, R. Fu, Y. Shen, Y. Han and X. Song: Compos. Sci. Technol., 67 (2007) 2493.
  10. Y. Zhou, F. Liu and H. Wang: Polym. Compos., 38 (2017) 803. https://doi.org/10.1002/pc.23641
  11. B. H. Jin, J. Jang, D. J. Kang, S. Yoon and H.-G. Im: Compos. Sci. Technol., 224 (2022) 109456.
  12. J. Kim, J. Jang, S. Yun, H. D. Kim, Y. Y. Byun, Y. T. Park, J. I. Song and C. Cho: Macromol. Mater. Eng., 306 (2021) 2100233.
  13. G.-M. Choi, K.-S. Jang, K.-S. Choi, J. Joo, H.-G. Yun, C. Lee and Y.-S. Eom: Polymers, 13 (2021) 957.
  14. W. G. Kim and H. Chun: Mol. Cryst. Liq. Cryst., 579 (2013) 39.
  15. D. Lee, S. Lee, S. Byun, K.-W. Paik and S. H. Song: Compos. Part A, 107 (2018) 217.
  16. H. An, Z. Liu, Q. Tian, J. Li, C. Zhou, X. Liu and W. Zhu: Microelectron. Reliab., 93 (2019) 39.
  17. C. Han, H.-G. Im, H. Y. Park, S.-Y. Yoon and D. J. Kang: Ceram. Int., 45 (2019) 16688.
  18. G. R. Atkins, R. M. Krolikowska and A. Samoc: J. Non-Cryst. Solids, 265 (2000) 210.
  19. I. Gill and A. Ballesteros: J. Am. Chem. Soc., 120 (1998) 8587.
  20. H.-G. Im, J. Jang, Y. Jeon, J. Noh, J. Jin, J.-Y. Lee and B.-S. Bae: ACS Appl. Mater. Interfaces, 12 (2020) 56462.
  21. J. Jang, Y. H. Kim, S. Park, D. Yoo, H. Cho, J. Jang, H. B. Jeong, H. Lee, J. M. Yuk, C. B. Park, D. Y. Jeon, Y.-H. Kim, B.-S. Bae and T.-W. Lee: Adv. Mater., 33 (2021) 2005255.
  22. S. K. Kuk, J. Jang, H. J. Han, E. Lee, H. Oh, H. Y. Kim, J. Jang, K. T. Lee, H. Lee, Y. S. Jung, C. B. Park and B.-S. Bae: ACS Appl. Mater. Interfaces, 11 (2019) 15952. https://doi.org/10.1021/acsami.8b20782
  23. Y.-W. Lim, J. Jin and B.-S. Bae: Adv. Mater., 32 (2020) 1907143.
  24. X. Shang, X. Cao, Y. Ma, J. J. Kumaravel, K. Zheng, J. Zhang and R. Zhang: Eur. Polym. J., 106 (2018) 53.
  25. J.-S. Kim, S. Yang and B.-S. Bae: Chem. Mater., 22 (2010) 3549.
  26. J. Jang, D.-E. Yoon, S.-M. Kang, Y. H. Kim, I. Lee, H. Lee, Y. H. Kim, D. C. Lee and B.-S. Bae: Nanoscale, 11 (2019) 14887.
  27. G. J. N. Wang, L. Shaw, J. Xu, T. Kurosawa, B. C. Schroeder, J. Y. Oh, S. J. Benight and Z. Bao: Adv. Funct. Mater., 26 (2016) 7254.
  28. J. Berriot, H. Montes, F. Lequeux, D. Long and P. Sotta: Macromolecules, 35 (2002) 9756.
  29. S. C. Yang, J. H. Jin, S.-Y. Kwak and B.-S. Bae: Macromol. Res., 19 (2011) 1166.
  30. P. R. Dvornic and R. W. Lenz: Macromolecules, 25 (1992) 3769.
  31. T. M. Long and T. M. Swager: J. Am. Chem. Soc., 125 (2003) 14113.
  32. J. Seitz: J. Appl. Polym. Sci., 49 (1993) 1331. https://doi.org/10.1002/app.1993.070490802