• Title/Summary/Keyword: Electronic packaging technology

Search Result 297, Processing Time 0.029 seconds

Design of EMI Reduction of SMPS Using MLCC Filters (MLCC를 이용한 SMPS의 EMI 저감 설계)

  • Choi, Byeong-In;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.97-105
    • /
    • 2020
  • Recently, as the data speed and operating frequencies of Ethernet keeps increasing, electro magnetic interference (EMI) also becomes increasing. The generation of such EMI will cause malfunction of near electronic devices. In this study, EMI filters were applied to reduce the EMI generated by DC-DC SMPS (switching mode power supply), which is the main cause of EMI generation of Ethernet switch. As the EMI filter, MLCCs with excellent withstanding voltage characteristics were used, which had advantages in miniaturization and mass production. Two types of EMI MLCC filters were used, which are X-capacitor and X, Y-capacitor. X-capacitor was composed of 2 MLCCs with 10 nF and 100 nF capacity and 1 Mylar capacitor. Y-capacitor was consisted of 6 MLCCs with a capacity of 27 nF. When only X-capacitor was applied as EMI filter, the conductive EMI field strength exceeded the allowable limit in frequency range of 150 kHz ~ 30 MHz. The radiative EMI also showed high EMI strength and very small allowable margin at the specific frequencies. When the X and Y-capacitors were applied, the conductive EMI was greatly reduced, and the radiation EMI was also found to have sufficient margin. In addition, X, Y-capacitors showed very high insulation resistance and withstanding resistance performances. In conclusion, EMI X, Y-capacitors using MLCCs reduced the EMI noise effectively and showed excellent electrical reliability.

Effects of Antioxidants on Shelf-life of Yukwa (유과의 유통기간 연장을 위한 항산화제 첨가의 효과)

  • Kum, Jun-Seok;Lee, Yong-Hwan;Ahn, Yong-Sik;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.720-727
    • /
    • 2001
  • This study was carried to investigate the changes in physical and chemical properties of Yukwa during preparation with addition of antioxidants and to develop its storage condition. Antioxidants (tocopherol and Oxyfos) were used in syrup coating and the packaging materials used were PET/EVOH $(16\;{\mu}m)/PL$ : P1 and PET/EVOH $(24\;{\mu}m)/PL$ : P2 (YOP1: P1 with Oxyfos, YOP2 : P2 with Oxyfos, YTP1 : P1 with tocopherol, YTP2 : P2 with tocopherol). Color values measured for Yukwa showed that L values of YOP1, YOP2, YTP1 and YTP2 were changed little during storage while a and b values of YOP1, YOP2, YTP1 and YTP2 were slightly decreased. Hardness and chewiness in textural properties were also decreased during storage. Yukwa packed in YOPl and YOP2 maintained less than 40 in peroxide value during for 12 weeks of storage period. The major fatty acid composition of frying oil were linoleic acid (54.2%), oleic acid (23.4%), palmitic acid (11.3%), linolenic acid (6.5%) and stearic acid (4.6%). There was no difference in composition of fatty acid during storage. Sensory evaluation (Yukwa odor and rancid odor) showed very similar results with determined by electronic nose. YTP1 and YTP2 had maintained sensory characteristics of Yukwa during 10 weeks storage.

  • PDF

Numerical Thermal Analysis of IGBT Module Package for Electronic Locomotive Power-Control Unit (전동차 추진제어용 IGBT 모듈 패키지의 방열 수치해석)

  • Suh, Il Woong;Lee, Young-ho;Kim, Young-hoon;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1011-1019
    • /
    • 2015
  • Insulated-gate bipolar transistors (IGBTs) are the predominantly used power semiconductors for high-current applications, and are used in trains, airplanes, electrical, and hybrid vehicles. IGBT power modules generate a considerable amount of heat from the dissipation of electric power. This heat generation causes several reliability problems and deteriorates the performances of the IGBT devices. Therefore, thermal management is critical for IGBT modules. In particular, realizing a proper thermal design for which the device temperature does not exceed a specified limit has been a key factor in developing IGBT modules. In this study, we investigate the thermal behavior of the 1200 A, 3.3 kV IGBT module package using finite-element numerical simulation. In order to minimize the temperature of IGBT devices, we analyze the effects of various packaging materials and different thickness values on the thermal characteristics of IGBT modules, and we also perform a design-of-experiment (DOE) optimization

MAGFET Hybrid IC with Frequency Output (주파수 출력을 갖는 MAGFET Hybrid IC)

  • Kim, Si-Hon;Lee, Cheol-Woo;Nam, Tae-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.194-199
    • /
    • 1997
  • When voltage or current gets out of the magnetic sensor as it is, we have often faced the problems such as introduction of noise and loss of voltage. In order to reduce these problems, a 2 drain MAGFET operating in the saturation region and fabricated by CMOS process, the system of I/V converter, VCO with operational amplifier, and V/F conversion circuits with Schmitt Trigger are designed and fabricated in one package. The absolute sensitivity of magnetic sensor shows 1.9 V/T and the product sensitivity is $3.2{\times}10^{4}\;V/A{\cdot}T$. The characteristic of V/F conversion is very stabilized and has the value of 190 kHz/T.

  • PDF

Effect of Targets on Synthesis of Aluminum Nitride Thin Films Deposited by Pulsed Laser Deposition (펄스레이저법으로 증착 제조된 AlN박막의 타겟 효과)

  • Chung, J.K.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.44-48
    • /
    • 2020
  • Aluminum nitride (AlN), as a substrate material in electronic packaging, has attracted considerable attention over the last few decades because of its excellent properties, which include high thermal conductivity, a coefficient of thermal expansion that matches well with that of silicon, and a moderately low dielectric constant. AlN films with c-axis orientation and thermal conductivity characteristics were deposited by using Pulsed Laser Deposition (PLD). The epitaxial AlN films were grown on sapphire (c-Al2O3) single crystals by PLD with AlN target and Y2O3 doped AlN target. A comparison of different targets associated with AlN films deposited by PLD was presented with particular emphasis on thermal conductivity properties. The quality of AlN films was found to strongly depend on the growth temperature that was exerted during deposition. AlN thin films deposited using Y2O3-AlN targets doped with sintering additives showed relatively higher thermal conductivity than while using pure AlN targets. AlN thin films deposited at 600℃ were confirmed to have highly c-axis orientation and thermal conductivity of 39.413 W/mK.

A Study of Properties of Sn-3Ag-0.5Cu Solder Based on Phosphorous Content of Electroless Ni-P Layer (Sn-3Ag-0.5Cu Solder에 대한 무전해 Ni-P층의 P함량에 따른 특성 연구)

  • Shin, An-Seob;Ok, Dae-Yool;Jeong, Gi-Ho;Kim, Min-Ju;Park, Chang-Sik;Kong, Jin-Ho;Heo, Cheol-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.481-486
    • /
    • 2010
  • ENIG (electroless Ni immersion gold) is one of surface finishing which has been most widely used in fine pitch SMT (surface mount technology) and BGA (ball grid array) packaging process. The reliability for package bondability is mainly affected by interfacial reaction between solder and surface finishing. Since the behavior of IMC (intermetallic compound), or the interfacial reaction between Ni and solder, affects to some product reliabilities such as solderability and bondability, understanding behavior of IMC should be important issue. Thus, we studied the properties of ENIG with P contents (9 wt% and 13 wt%), where the P contents is one of main factors in formation of IMC layer. The effect of P content was discussed using the results obtained from FE-SEM(field-emission scanning electron microscope), EPMA(electron probe micro analyzer), EDS(energy dispersive spectroscopy) and Dual-FIB(focused ion beam). Especially, we observed needle type irregular IMC layer with decreasing Ni contents under high P contents (13 wt%). Also, we found how IMC layer affects to bondability with forming continuous Kirkendall voids and thick P-rich layer.

Electrical Resistivity and Solder-Reaction Characteristics of Ni Films Fabricated by Electroplating (전기도금법으로 제조한 Ni 박막의 전기비저항 및 솔더 반응성)

  • Lee Kwang-Yong;Won Hye-Jin;Jun Sung-Woo;Oh Teck-Su;Byun Ji-Young;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.253-258
    • /
    • 2005
  • Characteristics of electroplated Ni films such as grain size, resistivity, solder wetting angle, and growth rate of intermetallic compound were evaluated as a function of electroplating current density. With increasing the electroplating current density from $5\;mA/cm^2 $ to $40\;mA/cm^2 $, the nodule size on the Ni film surface decreased, grain refinement occurred, and resistivity increased from $7.37\mu\Omega-cm$ to $9.13\mu\Omega-cm$. Compared with Ni film processed at $40\;mA/cm^2 $, Ni films electroplated at $5\;mA/cm^2 $ and $10\;mA/cm^2 $ exhibited low resistivity, dense microstructure, and slow growth rate of intermetallic compound. Ni films electroplated at $5\;mA/cm^2 $ and $10\;mA/cm^2 $ are more suitable for Ni UBM application than that fabricated at $40\;mA/cm^2 $.

  • PDF

Manufacturing of Metal Micro-wire Interconnection on Submillimeter Diameter Catheter (서브-밀리미터 직경의 카테터 표면 위 금속 마이크로 와이어 접착 공정)

  • Jo, Woosung;Seo, Jeongmin;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.29-35
    • /
    • 2017
  • In this paper, we investigated a manufacturing process of metal micro-wire interconnection on submillimeter diameter catheter. Over the years, flexible electronic researches have focused on flexible plane polymer substrate and micro electrode manufacturing on its surface. However, a curved polymer substrate, such as catheter, is very important for medical application. Among many catheters, importance of submillimeter diameter steerable catheter is increasing to resolve the several limitations of neurosurgery. Steering actuators have been researched for realizing the steerable catheter, but there is no research about practical wiring for driving these actuators. Therefore we developed a new manufacturing process for metal micro-wire interconnection on submillimeter diameter catheter. We designed custom jigs for alignment of the metal micro-wires on the submillimeter diameter catheter. An UV curing system and commercial products were used to reduce the manufacturing time and cost; Au micro-wire, UV curable epoxy, UV lamp, and submillimeter diameter catheter. The assembled catheter was characterized by using an optical microscope, a resistance meter, and a universal testing machine.

Antenna-Diplexer Module for Cellular/SDMB Band Using LTCC Technology (LTCC 공법을 사용한 Cellular/SDMB 안테나-다이플렉서 모듈)

  • Ha, Jeung-Uk;Chang, Ki-Hun;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.774-783
    • /
    • 2007
  • This paper presents an integrated packaging antenna-diplexer module for wireless communication systems in the Cellular and SDMB band. The design and the realization of the proposed one are experimentally analyzed and discussed. It consists of a dual-resonance antenna and a diplexer with a multi-layer LTCC(${\varepsilon}_r=7.8,\;tan\;{\delta}=0.0043$) technology with integration capability and low loss. The dual-resonance antenna of the proposed module has the meander line structure for size reduction and has the shorting structure of an inverted F antenna to achieve good impedance matching. The diplexer of the proposed module was designed with the combination of low pass filter(LPF) and high pass filter(HPF). Decreasing the mutual interference between them provides a high isolation characteristic. The proposed antenna-diplexer module with dimensions of $27.5{\times}12.0{\times}2.2mm$ operates within a range from 813 MHz to 902 MHz for the cellular band and from 2,586 MHz to 2,655 MHz for the SDMB band. And the measured gain of the fabricated module is -1.96 dBi for Cellular band and -5.43 dBi for SDMB band. The parameters for the antenna-diplexer module are investigated and the several performances are discussed.

Fabrication of Through-hole Interconnect in Si Wafer for 3D Package (3D 패키지용 관통 전극 형성에 관한 연구)

  • Kim, Dae-Gon;Kim, Jong-Woong;Ha, Sang-Su;Jung, Jae-Pil;Shin, Young-Eui;Moon, Jeong-Hoon;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.64-70
    • /
    • 2006
  • The 3-dimensional (3D) chip stacking technology is a leading technology to realize a high density and high performance system in package (SiP). There are several kinds of methods for chip stacking, but the stacking and interconnection through Cu filled through-hole via is considered to be one of the most advanced stacking technologies. Therefore, we studied the optimum process of through-hole via formation and Cu filling process for Si wafer stacking. Through-hole via was formed with DRIE (Deep Reactive ion Etching) and Cu filling was realized with the electroplating method. The optimized conditions for the via formation were RE coil power of 200 W, etch/passivation cycle time of 6.5 : 6 s and SF6 : C4F8 gas flow rate of 260 : 100 sccm. The reverse pulsed current of 1.5 A/dm2 was the most favorable condition for the Cu electroplating in the via. The Cu filled Si wafer was chemically and mechanically polished (CMP) for the following flip chip bumping technology.