DOI QR코드

DOI QR Code

Manufacturing of Metal Micro-wire Interconnection on Submillimeter Diameter Catheter

서브-밀리미터 직경의 카테터 표면 위 금속 마이크로 와이어 접착 공정

  • Jo, Woosung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Seo, Jeongmin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Taek-Soo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 조우성 (한국과학기술원 기계공학과) ;
  • 서정민 (한국과학기술원 기계공학과) ;
  • 김택수 (한국과학기술원 기계공학과)
  • Received : 2017.03.15
  • Accepted : 2017.06.02
  • Published : 2017.06.30

Abstract

In this paper, we investigated a manufacturing process of metal micro-wire interconnection on submillimeter diameter catheter. Over the years, flexible electronic researches have focused on flexible plane polymer substrate and micro electrode manufacturing on its surface. However, a curved polymer substrate, such as catheter, is very important for medical application. Among many catheters, importance of submillimeter diameter steerable catheter is increasing to resolve the several limitations of neurosurgery. Steering actuators have been researched for realizing the steerable catheter, but there is no research about practical wiring for driving these actuators. Therefore we developed a new manufacturing process for metal micro-wire interconnection on submillimeter diameter catheter. We designed custom jigs for alignment of the metal micro-wires on the submillimeter diameter catheter. An UV curing system and commercial products were used to reduce the manufacturing time and cost; Au micro-wire, UV curable epoxy, UV lamp, and submillimeter diameter catheter. The assembled catheter was characterized by using an optical microscope, a resistance meter, and a universal testing machine.

본 논문에서는 서브 밀리미터 직경의 카테터 표면 위에 금속 마이크로 와이어를 접착하는 공정을 연구하였다. 최근 유연 전자 디바이스 분야는 유연한 평면 폴리머 기판과 그 기판 위의 마이크로 전극 공정이 계속해서 연구되고 있다. 하지만, 의료 분야에서는 카테터와 같이 곡면을 가진 기판이 중요하다. 특히 카테터 중에서도 여러 한계점을 가진 뇌혈관 수술을 개선하기 위한 서브 밀리미터의 직경을 가진 조향 가능한 카테터의 중요성이 대두되고 있다. 이러한 카테터를 구현하기 위해 조향을 위한 엑추에이터들은 연구가 되고 있지만 이를 구동하기 위한 배선 연구는 진행된 바가 없다. 그러므로 본 연구에서는 이러한 서브 밀리미터 카테터 위에 마이크로 금속 와이어를 접착하는 공정을 개발하였다. 적합한 지그를 설계함으로써 마이크로 와이어를 서브 밀리미터 직경의 카테터에 정렬한다. 그리고 자외선 경화 시스템과 상용품을 이용하여 공정 시간 및 공정 비용을 감소시켰다. 상용품으로 골드 마이크로 와이어, 자외선 경화 에폭시, 자외선 램프 그리고 서브 밀리미터 카테터를 이용하였다. 공정 후 카테터는 광학 현미경, 저항 측정기, 만능 시험기를 통해 분석하였다.

Keywords

References

  1. J.-H. Ahn, H. Lee, and S.-H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1, (2013). https://doi.org/10.6117/kmeps.2013.20.2.001
  2. T.-I. Lee, C. Kim, M. S. Kim, and T.-S. Kim, "Measurement of Flexural Modulus of Lamination Layers on Flexible Substrates", J. Microelectron. Packag. Soc., 23(3), 63, (2016). https://doi.org/10.6117/KMEPS.2016.23.3.063
  3. Y. Shang, C. Wang, X. He, J. Li, Q. Peng, E. Shi, R. Wang, S. Du, A. Cao, and Y. Li, "Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions", Nano Energy, 12, 401, (2015). https://doi.org/10.1016/j.nanoen.2014.11.048
  4. L. G. D. Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, "Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics", ACS Nano, 4, 2865, (2010). https://doi.org/10.1021/nn901587x
  5. J. Jin, J.-H. Ko, S. Yang, B.-S. Bae, "Rollable Transparent Glass-Fabric Reinforced Composite Substrate for Flexible Devices", Adv. Mater., 22, 4510, (2010). https://doi.org/10.1002/adma.201002198
  6. C. Kim, T.-I. Lee, and T.-S. Kim, "Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable Electronic Packaging", J. Microelectron. Packag. Soc., 23(2), 19, (2016). https://doi.org/10.6117/kmeps.2016.23.2.019
  7. M. J. Mack, "Minimally Invasive and Robotic Surgery", JAMA, 285, 568, (2001). https://doi.org/10.1001/jama.285.5.568
  8. A. M. Okamura, "Haptic Feedback in Robot-Assited Minimally Invasive Surgery", Curr. Opin. Urol, 19, 102, (2009). https://doi.org/10.1097/MOU.0b013e32831a478c
  9. Y. Haga, and M. Esashi, "Biomedical Microsystems for Minimally Invasive Diagnosis and Treatment", Proc. IEEE, 92, (2004).
  10. M. F. Metzger, T. S. Wilson, D. Schumann, D. L. Matthews, and D. J. Maitland, "Mechanical Properties of Mechanical Actuator for Treating Ischemic Stroke", Biomed. Microdevices, 4, 89, (2002). https://doi.org/10.1023/A:1014674912979
  11. M. Shahinpoor, and K. J. Kim, "Ionic polymer-metal composites: I. Fundamentals", Smart Mater. Struct., 10, 819, (2001). https://doi.org/10.1088/0964-1726/10/4/327
  12. S. Ruiz, B. Mead, V. Palmre, K. J. Kim, and W. Yim, "Corrigendum: A cylindrical ionic polymer-metal composite-based robotic catheter platform: modeling, design and control", Smart Mater. Struct., 24, 1, (2015).
  13. P. H. Lau, K. Takei, C. Wang, Y. Ju, J. Kim, Z. Yu, T. Takahashi, G. Cho, and A. Javey, "Fully Printed, High Performance Carbon Nanotube Thin-Film Transistors on Flexible Substrates", Nano Lett., 13, 3864, (2013). https://doi.org/10.1021/nl401934a
  14. A. Russo, B. Y. Ahn, J. J. Adams, E. B. Duoss, J. T. Bernhard, and J. A. Lewis, "Pen-on-Paper Flexible Electronics", Adv. Mater., 23, 3426, (2011). https://doi.org/10.1002/adma.201101328
  15. H. M. Ho, W. Lam, S. Stoukatch, P. Ratchev, C. J. Vath III, and E. Beyne, "Direct gold and copper wires bonding on copper", Microelectronics Reliability, 43, 913, (2003). https://doi.org/10.1016/S0026-2714(03)00074-X
  16. B. Goss, "Bonding glass and other substrates with UV curing adhesives", Int. J. Adhes. Adhes., 22, 405, (2002). https://doi.org/10.1016/S0143-7496(02)00022-2
  17. C. D. Petruczok, and K. K. Gleason, "Initiated Chemical Vapor Deposition-Based Method for Patterning Polymer and Metal Microstructures on Curved Substrates", Adv. Mater., 24, 6445, (2012). https://doi.org/10.1002/adma.201201975
  18. M. Ahamed, M. S. Alsalhi, and M. K. J. Siddiqui, "Silver nanoparticle applications and human health", Clin. Chim. Acta, 411, 1841, (2010). https://doi.org/10.1016/j.cca.2010.08.016
  19. L. Morris, N. Hynes, S. Sultan, P. McCarthy, P. Delassus, and P. Fahy, "An In Vitro Assessment of the Cerebral Hemodynamics Through Three Patient Specific Circle of Willis Geometries", J. Biomed. Eng., 136, 011007, (2014).
  20. K. Studer, C. Decker, E. Beck, and R. Schwalm, "Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I", Prog. Org. Coat., 48, 92, (2003). https://doi.org/10.1016/S0300-9440(03)00120-6
  21. K. S. Kim, J. Y. Song, E. K. Chung, J. K. Park, and S. H. Hong, "Relationship between mechanical properties and microstructure of ultra-fine gold bonding wires", Mech. Mater., 38, 119, (2006). https://doi.org/10.1016/j.mechmat.2005.05.015