• Title/Summary/Keyword: Electronic load controller

Search Result 172, Processing Time 0.025 seconds

Adaptive PI Controller Design Based on CTRNN for Permanent Magnet Synchronous Motors (영구자석 동기모터를 위한 CTRNN모델 기반 적응형 PI 제어기 설계)

  • Kim, Il-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.635-641
    • /
    • 2016
  • In many industrial applications that use the electric motors robust controllers are needed. The method using a neural network in order to design a robust controller when a disturbance occurs is studied. Backpropagation algorithm, which is used in a conventional neural network controller is used in many areas, but when the number of neurons in the input layer, hidden layer and output layer of the neural network increases the processing speed of the learning process is slow. In this paper an adaptive PI(Proportional and Integral) controller based on CTRNN(Continuous Time Recurrent Neural Network) for permanent magnet synchronous motors is presented. By varying the load and the speed the validity of the proposed method is verified through simulation and experiments.

Enhanced Proportional-Resonant Current Controller for Unbalanced Stand-alone DFIG-based Wind Turbines

  • Phan, Van-Tung;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.443-450
    • /
    • 2010
  • An enhanced control strategy for variable-speed unbalanced stand-alone doubly-fed induction generator-based wind energy conversion systems is proposed in this paper. The control scheme is applied to the rotor-side converter to eliminate stator voltage imbalance. The proposed current controller is developed based on the proportional-resonant regulator, which is implemented in the stator stationary reference frame. The resonant controller is tuned at the stator synchronous frequency to achieve zero steady-state errors in rotor currents without decomposing the positive and negative sequence components. The computational complexity of the proposed control algorithm is greatly simplified, and control performance is significantly improved. Finally, simulations and experimental results are presented to verify the feasibility and the robustness of the proposed control scheme.

A Robust Sensorless speed control of Sensorless BLDC Motor (센서리스 BLDC 전동기의 강인한 속도 제어)

  • Kim, Jong-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.4
    • /
    • pp.266-275
    • /
    • 2008
  • The sensorless speed control technique for BLDC motor using digital IP control is proposed in this paper for advanced speed characteristic which is robust to motor parameters and load variations. The sensorless drive of BLDC motor using terminal voltages is affected by load or speed because it uses analog filters to estimate the rotor position. For this reason, the robust speed controller with the accurate rotor position estimator is needed for sensorless control which is robust to load and insensitive to motor parameters. The constant speed robust to load variation and the stable sensorless control of BLDC motor robust to the increase or decrease of speed with constant load is implemented using digital IP control in this paper. The validity to these is established with experimentation.

  • PDF

THE SPEED CONTROL OF DC SERIER WOUND MOTOR USING DSP (TMS320F240)

  • Bae, Jong-Il;Je, Chang-Woo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.371-376
    • /
    • 2003
  • In general, the electronic forklift driven by DC motor drive system is used in the industrial field. Classically, the DC motor is controlled by speed control using proportion control method, by output torque following the load on the plane like a manual operation. But in the industrial field, the electronic forklift is demanded the robust drive mode. Some cases of the mode, there are trouble in torque and speed control following slope capacity. The control is sensitive concerning with slope angle and output speed, various control method is studied for stability of speed control. We apply speed controller for the self-tuning using DSP(TMS320F240) as main controller for high speed processor, embody dynamic characteristic of control compared the PI control to the fuzzy control.

  • PDF

Introduction of Generator Unit Controller and Its Tuning for Automatic Generation Control in Korean Energy Management System (K-EMS)

  • Park, Min-Su;Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Automatic generation control (AGC) is an important function for load frequency control, which is being implemented in Energy Management System (EMS). A key feature of AGC is to back up governors to enhance the performance of frequency control. The governor regulates system frequency in several to ten seconds, while the droop control concept results in steady-state control error. AGC is a supplementary tool for compensation of the steady-state error caused by the droop setting of the governors. As the AGC target is delivered to each generator as an open loop control target, the generator output is not guaranteed to follow the AGC target. In this paper, we introduce generating unit controller (GUC) control block, which has the purpose of enabling the generator output to track the AGC target while maintaining the governor performance. We also address the tuning methods of GUC for better performance of AGC in the Korea Energy Management System (K-EMS).

Low-Voltage and High-Current DC Output Realized by Multiple Power Cells Based on Deadbeat and Automatic Current Sharing Control

  • Liu, Jinfeng;Zhang, Yu;Wang, Xudong;IU, Herbert Ho-Ching
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1575-1585
    • /
    • 2017
  • This paper presents a synchronous generator with a distributed system of multiple parallel three-phase power cells. This generator can immediately output high DC. Each power cell comprises three-phase windings and a three-phase synchronous rectification bridge with a deadbeat control of load power feedforward, which can improve the characteristics of dynamic response and reflect the load variance in real time. Furthermore, each power cell works well independently and modularly using the method of automatic maximum current sharing. The simulation and experimental results for the distributed controller of multiple power cells demonstrate that the deadbeat control method can respond quickly and optimize the quality of the energy. Meanwhile, automatic maximum current sharing can realize the validity of current sharing among power cells.

An Adaptive UPFC Based S tabilizer forDamping of Low Frequency Oscillation

  • Banaei, M.R.;Hashemi, A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.197-208
    • /
    • 2010
  • Unified power flow controller (UPFC) is the most reliable device in the FACTS concept. It has the ability to adjust all three control parameters effective in power flow and voltage stability. In this paper, a linearized model of a power system installed with a UPFC has been presented. UPFC has four control loops that by adding an extra signal to one of them, increases dynamic stability and load angle oscillations are damped. In this paper, after open loop eigenvalue (electro mechanical mode) calculations, state-space equations have been used to design damping controller and it has been considered to influence active and reactive power flow durations as the input of damping controller, in addition to the common speed duration of synchronous generators as input damper signal. To increase stability, further Lead-Lag and LQR controllers, a novel on-line adaptive controller has been used analytically to identify power system parameters. Closed-loop calculations of the electro mechanical mode verify the improvement of system pole placement after controller designing. Suitable operation of adaptive controller to decrease rotor speed oscillations against input mechanical torque disturbances is confirmed by the simulation results.

Evaluation of the Implementation of ISO 11783 for 250 kbps Transmission Rate of Tractor Electronic Control Unit

  • Lee, Dong-Hoon;Lee, Kyou-Seung;Moon, Jae-Min;Park, Seung-Je;Kim, Cheol-Soo;Kim, Myeong-Ho;Cho, Yong-Jin;Kim, Seong-Min
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.225-232
    • /
    • 2012
  • Purpose: Accurate monitoring of information from various agricultural vehicles is one of the most important factors for appropriate management strategy of field operations. While there has been a number of study and design on applications of sensors and actuators for data acquisition and control system in tractor, incompatibility between various customized hardware and software has become a major obstacle to the universal deployment in real field operation. International standard for implementation of electronic control unit (ECU) in agricultural vehicles has becoming a mandatory requirement for inter-operation compatibility in the international trade of agricultural vehicle industries. The ISO 11783 standard is basically based upon well known communication technology designated using the controller area network (CAN) bus. While CAN bus could provide 1.0 Mbps of communication speed, the standard only recommended 250 kbps. Methods: This study presents the implementation and evaluation of ISO 11783 for tractor electronic control units (TECU)with a higher transmission rate from multiple ECU than 250 kbps. Throughput and loss rate of the developed prototype were calculated across manipulated bus load for laboratory experimental tests, and the maximum requirement of transmission rate by ISO 11873 was satisfied with lower than 60% of bus load. Results: Field tests with a TECU implemented to process messages from global positioning system (GPS) receiver resulted that the root mean square error of position information was lower than 4 m with 0.5 m/s as a travelling speed. Conclusions: Results of this study represent the utilization of the international standard ISO 11783 to providepractical developments in terms with the inter-operability of TECU.

Development of ADWHM(Advanced Digital Watt-Hour Meter) for Remote Management of Distribution Systems (배전원격관리를 위한 차세대 디지털 적산전력계 개발)

  • 고윤석;윤상문;서성진;강태규
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.6
    • /
    • pp.316-323
    • /
    • 2004
  • This paper develops an ADWHM(Advanced Digital Watt-Hour Meter) which integrates and implements the voltage management data record function and the load management data record function in the electronic watt-hour meter. ADWHM is developed based on PIC16F874 which is 8bit micro-controller of RISK type for the easy of programing and maintenance, and electronic power signal processing module is located at front of it to reduce the computing load of processor. Also, a 16kbyte EEPROM is used to record the voltage management data and load management data for a week as well as watt-hour data and USART communication mode is used to transfer data from ADWHM to PC. The accuracy of the voltage and unt measuring for ADWHM is verified by identifying the LCD display values of the ADWHM after the voltage signals of id levels from digital function generator is applied to PT(Potential Transformer) and CT(Current Transformer) output under state which it is separated from real power line. On the its basic functions such as watt-hour data recording function, voltage management data recording function and load management data recording function was verified by showing data for three days among the collected data to PC by RS232C communication from ADWHM which was connected to real power lines for a week.

Theoretical Analysis and Control of DC Neutral-point Voltage Balance of Three-level Inverters in Active Power Filters

  • He, Yingjie;Liu, Jinjun;Tang, Jian;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.344-356
    • /
    • 2012
  • In recent years, multilevel technology has become an effective and practical solution in the field of moderate and high voltage applications. This paper discusses an APF with a three-level NPC inverter. Obviously, the application of such converter to APFs is hindered by the problem of the voltage unbalance of DC capacitors, which leads to system instability. This paper comprehensively analyzes the theoretical limitations of the neutral-point voltage balancing problem for tracking different harmonic currents utilizing current switching functions from the space vector PWM (SVPWM) point of view. The fluctuation of the neutral point caused by the load currents of certain order harmonic frequency is reported and quantified. Furthermore, this paper presents a close-loop digital control algorithm of the DC voltage for this APF. A PI controller regulates the DC voltage in the outer-loop controller. In the current-loop controller, this paper proposes a simple neutral-point voltage control method. The neutral-point voltage imbalance is restrained by selecting small vectors that will move the neutral-point voltage in the direction opposite the direction of the unbalance. The experiment results illustrate that the performance of the proposed approach is satisfactory.