• 제목/요약/키워드: Electronic devices

Search Result 4,580, Processing Time 0.052 seconds

Synthesis of Graphene on Hexagonal Boron Nitride by Low Pressure Chemical Vapor

  • Han, Jae-Hyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.391-392
    • /
    • 2012
  • Graphene is a perfectly two-dimensional (2D) atomic crystal which consists of sp2 bonded carbon atoms like a honeycomb lattice. With its unique structure, graphene provides outstanding electrical, mechanical, and optical properties, thus enabling wide variety of applications including a strong potential to extend the technology beyond the conventional Si based electronic materials. Currently, the widespread application for electrostatically switchable devices is limited by its characteristic of zero-energy gap and complex process in its synthesis. Several groups have investigated nanoribbon, strained, or nanomeshed graphenes to induce a band gap. Among various techniques to synthesize graphene, chemical vapor deposition (CVD) is suited to make relatively large scale growth of graphene layers. Direct growth of graphene on hexagonal boron nitride (h-BN) using CVD has gained much attention as the atomically smooth surface, relatively small lattice mismatch (~1.7%) of h-BN provides good quality graphene with high mobility. In addition, induced band gap of graphene on h-BN has been demonstrated to a meaningful value about ~0.5 eV.[1] In this paper, we report the synthesis of grpahene / h-BN bilayer in a chemical vapor deposition (CVD) process by controlling the gas flux ratio and deposition rate with temperature. The h-BN (99.99%) substrate, pure Ar as carrier gas, and $CH_4$ are used to grow graphene. The number of graphene layer grown on the h-BN tends to be proportional to growth time and $CH_4$ gas flow rate. Epitaxially grown graphene on h-BN are characterized by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy.

  • PDF

The Fabrication an dCharacteristic Analysis with Novel High Efficiency Organic Polymer Green Electroluminescence (새로운 고효울 유기 폴리머 녹색발광소자의 제작 및 특성 분석)

  • Oh, Hwan-Sool
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.1-7
    • /
    • 2001
  • Single-layer polymer green electroluminescent devices were fabricated with novel material synthesis by using moleculely-dispersed TTA and NIDI into the polymer PC(B79) emitter layer doped with C6 fluorescent dye which has low operating voltage and high quantum efficiency. A EL cell structure of glass substrate/indium-tin-oxide/PC:TTA:NIDI:C6/Ca/Al was employed and compared with various low work function cathode electrodes Ca and Mg metals. By adjusting the concentration of the fluorescent dye C6, low turn-on voltage of 2.4V was obtained, maximum quantum efficiency of 0.52% at 0.08mole% has been improved by about a factor of ~50 times in comparison with the undoped cell. The PL and EL colors can't be turned by changing the concentration of the C6 dopant. PL emission peaking was obtained at 495nm and EL emission peaking at 520nm with FWHM ~70nm

  • PDF

Multi-functional (Temperature, Pressure, Humidity) Sensor by MEMS technology (MEMS 기술을 이용한 온도, 압력, 습도 복합 센서)

  • Kwon Sang-wook;Won Jong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.11
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we present design and prototyping of a low-cost, integrated multi-functional micro health sensor chip that can be used or embedded in widely consumer devices, such as cell phone and PDA, for monitoring environmental condition including air pressure, temperature and humidity. This research's scope includes basic individual sensor study, architecture for integrating sensors on a chip, fabrication process compatibility and test/evaluation of prototype sensors. The results show that the integrated TPH sensor has good characteristics of ${\pm}\;1\%FS$ of linearity and hysteresis for pressure sensor and temperature sensor and of ${\pm}\;5\%FS$ of linearity and hysteresis But if we use 3rd order approximation for humidity sensor, full scale error becomes much smaller and this will be one of our future study.

Sub-10 nm Ge/GaAs Heterojunction-Based Tunneling Field-Effect Transistor with Vertical Tunneling Operation for Ultra-Low-Power Applications

  • Yoon, Young Jun;Seo, Jae Hwa;Cho, Seongjae;Kwon, Hyuck-In;Lee, Jung-Hee;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.172-178
    • /
    • 2016
  • In this paper, we propose a sub-10 nm Ge/GaAs heterojunction-based tunneling field-effect transistor (TFET) with vertical band-to-band tunneling (BBT) operation for ultra-low-power (LP) applications. We design a stack structure that is based on the Ge/GaAs heterojunction to realize the vertical BBT operation. The use of vertical BBT operations in devices results in excellent subthreshold characteristics with a reduction in the drain-induced barrier thinning (DIBT) phenomenon. The proposed device with a channel length ($L_{ch}$) of 5 nm exhibits outstanding LP performance with a subthreshold swing (S) of 29.1 mV/dec and an off-state current ($I_{off}$) of $1.12{\times}10^{-11}A/{\mu}m$. In addition, the use of the highk spacer dielectric $HfO_2$ improves the on-state current ($I_{on}$) with an intrinsic delay time (${\tau}$) because of a higher fringing field. We demonstrate a sub-10 nm LP switching device that realizes a good S and lower $I_{off}$ at a lower supply voltage ($V_{DD}$) of 0.2 V.

The Optimization of FCBGA thermal Design by Micro Pattern Structure (마이크로 패턴 구조를 이용한 플립칩 패키지 BGA의 최적 열설계)

  • Lee, Tae-Kyoung;Kim, Dong-Min;Jun, Ho-In;Ha, Sang-Won;Jeong, Myung-Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2011
  • According to the trends of electronic package to be smaller, thinner and more integrative, Flip Chip Ball Grid Array (FCBGA) become more used for mobile phone. However, the flip chip necessarily generate the heat by the electrical resistance and generated heat is increased due to reduced distribution area of the heat in accordance with the miniaturization trend of the package. Thermal issues can result in problems of devices that are sensitive to temperature and stress. Then the heat can generate problems to the system. In this paper, in order to improve the thermal issues of FCBGA, thermal characteristics of FCBGA was analyzed qualitatively by using the general heat transfer module of Comsol 3.5a and In order to solve thermal issues, flip chip with new micro structure is proposed by the simulation. and also by comparing existing model and analyzing variables such as pitch, height of the pattern and shape of the heat spreader, the improvement of heat dissipation characteristics about 18% was confirmed.

Design of Dual-band Microstrip Array Antenna for WLAN/WiFi (WLAN/WiFi용 이중대역 마이크로스트립 배열 안테나 설계)

  • Kim, Kab-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.27-30
    • /
    • 2016
  • in this paper, to improve the narrow bandwidth problem of the microstrip antenna for WLAN and WiFi dual band array antenna was designed to satisfy the bandwidth of 3.6GHz and 5.2GHz it contained with IEEE 802. 11. The substrate of proposed microstrip array antenna is FR-4(er=4.3) and $25mm{\times}45mm{\times}0.8mm$ size and thickness t=0.035mm, and the simulation was used for CST Microwave Studio 2014. input return loss compared -10dB less than operates at and when gain 3.6GHz 2.516dB, 5.2GHz showed the results of 3.581dB. the antenna designed to be miniaturized and the be used in electronic devices such as mobile phone.

Effect of Basal-plane Stacking Faults on X-ray Diffraction of Non-polar (1120) a-plane GaN Films Grown on (1102) r-plane Sapphire Substrates

  • Kim, Ji Hoon;Hwang, Sung-Min;Baik, Kwang Hyeon;Park, Jung Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.557-565
    • /
    • 2014
  • We report the effect of basal-plane stacking faults (BSFs) on X-ray diffraction (XRD) of non-polar (11$\underline{2}$0) a-plane GaN films with different $SiN_x$ interlayers. Complete $SiN_x$ coverage and increased three-dimensional (3D) to two-dimensional (2D) transition stages substantially reduce BSF density. It was revealed that the Si-doping profile in the Si-doped GaN layer was unaffected by the introduction of a $SiN_x$ interlayer. The smallest in-plane anisotropy of the (11$\underline{2}$0) XRD ${\omega}$-scan widths was found in the sample with multiple $SiN_x$ layers, and this finding can be attributed to the relatively isotropic GaN mosaic resulting from the increase in the 3D-2D growth step. Williamson-Hall (WH) analysis of the (h0$\underline{h}$0) series of diffractions was employed to determine the c-axis lateral coherence length (LCL) and to estimate the mosaic tilt. The c-axis LCLs obtained from WH analyses of the present study's representative a-plane GaN samples were well correlated with the BSF-related results from both the off-axis XRD ${\omega}$-scan and transmission electron microscopy (TEM). Based on WH and TEM analyses, the trends in BSF densities were very similar, even though the BSF densities extracted from LCLs indicated that the values were reduced by a factor of about twenty.

Design and Analysis of Sub-10 nm Junctionless Fin-Shaped Field-Effect Transistors

  • Kim, Sung Yoon;Seo, Jae Hwa;Yoon, Young Jun;Yoo, Gwan Min;Kim, Young Jae;Eun, Hye Rim;Kang, Hye Su;Kim, Jungjoon;Cho, Seongjae;Lee, Jung-Hee;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.508-517
    • /
    • 2014
  • We design and analyze the n-channel junctionless fin-shaped field-effect transistor (JL FinFET) with 10-nm gate length and compare its performances with those of the conventional bulk-type fin-shaped FET (conventional bulk FinFET). A three-dimensional (3-D) device simulations were performed to optimize the device design parameters including the width ($W_{fin}$) and height ($H_{fin}$) of the fin as well as the channel doping concentration ($N_{ch}$). Based on the design optimization, the two devices were compared in terms of direct-current (DC) and radio-frequency (RF) characteristics. The results reveal that the JL FinFET has better subthreshold swing, and more effectively suppresses short-channel effects (SCEs) than the conventional bulk FinFET.

Implementation of Home Network Services Using OpenWRT-based Wireless Access Point and Zigbee Communications (OpenWRT 기반 유무선 공유기와 Zigbee 통신을 이용한 홈 네트워크 서비스 구축)

  • Kwon, Kisu;Lee, Kyoung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.375-381
    • /
    • 2018
  • As smart home network services such as home CCTV, outdoor control of home appliances, home security and disaster prevention services become popular, there appear various affiliated products including smart home gateway and smart speaker. Since those services are generally developed on the vendors' individual hardware and software platforms, it is not much expected for them to interwork well among different architecture and communication methods. In this paper, we propose a new home network service system running on an open source platform to address such issues. We implemented a home network system using OpenWRT-based wireless router(or access point) and Zigbee communication technology. In the proposed system, a wireless router replaces a commercial home gateway and small control units implemented with Arduino control electronic devices and sensors in home. Several service scenarios are also implemented to verify the operability of the proposed system.

MBE growth and magnetic properties of epitaxial FeMn2O4 film on MgO(100)

  • Duong, Van Thiet;Nguyen, Thi Minh Hai;Nguyen, Anh Phuong;Dang, Duc Dung;Duong, Anh Tuan;Nguyen, Van Quang;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.318.2-318.2
    • /
    • 2016
  • FeM2X4 spinel structures, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. Both the Fe and M ions can occupy tetrahedral and octahedral sites; therefore, these types of compounds can display various physical and chemical properties [1]. On the other hand, the electronic and magnetic properties of these spinel structures could be modified via the control of cation distribution [2, 3]. Among the spinel oxides, iron manganese oxide is one of promising materials for applications. FeMn2O4 shows inverse spinel structure above 390 K and ferrimagnetic properties below the temperature [4]. In this work, we report on the structural and magnetic properties of epitaxial FeMn2O4 thin film on MgO(100) substrate. The reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD) results indicated that films were epitaxially grown on MgO(100) without the impurity phases. The valance states of Fe and Mn in the FeMn2O4 film were carried out using x-ray photoelectron spectrometer (XPS). The magnetic properties were measured by vibrating sample magnetometer (VSM), indicating that the samples are ferromagnetic at room temperature. The structural detail and origin of magnetic ordering in FeMn2O4 will be discussed.

  • PDF