• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.036 seconds

A Study on the Field Ring of High Voltage Characteristics Improve for the Power Semiconductor (전력반도체 고내압 특성 향상을 위한 필드링 최적화 연구)

  • Nam, Tae-Jin;Jung, Eun-Sik;Jung, Hun-Suk;Kim, Sung-Jong;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.165-169
    • /
    • 2012
  • Power semiconductor devices are widely used as high voltage applications to inverters and motor drivers, etc. The blocking voltage is one of the most important parameters for power semiconductor devices. And cause of junction curvature effects, the breakdown voltage of the device edge and device unit cells was found to be lower than the 'ideal' breakdown voltage limited by the semi-infinite junction profile. In this paper, Propose the methods for field ring design by DOE (Design of Experimentation). So The field ring can be improve for breakdown voltage and optimization.

Gestures Recognition for Smart Device using Contact less Electronic Potential Sensor (스마트 장치에서 비접촉식 전위계차 센서 신호를 이용한 동작 인식 기법)

  • Oh, KangHan;Kim, Soohyung;Na, Inseop;Kim, Young Chul;Moon, Changhub
    • Smart Media Journal
    • /
    • v.3 no.2
    • /
    • pp.14-19
    • /
    • 2014
  • This paper presents a novel approach to recognize human gestures using k-NN and DTW based on Con tactless Electronic Potential Sensor(CEPS) in the smart devices such as smart TV and smart-phone in the proposed method, we used a Kalman filter to remove noise on gesture signal from CEPS and a PCA algorithm is utilized for reducing the dimensionality of gesture signal without data losses. And then in order to categorize gesture signals, k-NN classifier with DTW distance measure is considered. In the experimental result, we evaluate recognition performance with CEPS gesutres signal form the above two types of smart devices, and we can successfully identify five different gestures with more than 90% of recognition accuracy.

Application of an Iterative 2D Equalizer to Holographic Data Storage Systems (반복 2차 등화기의 홀로그래픽 데이터 저장 장치 적용)

  • Kim, Sun-Ho;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.1-5
    • /
    • 2012
  • At the present time when the limits of the magnetic storage systems appear, the holographic data storage (HDS) devices with high data transfer rate and high recording density are emerging as attractive candidates for next-generation optical storage devices. In this paper, to effectively improve the detection performance that is degraded by the two-dimensional inter-symbol interference under the HDS channel environment and the pixel misalignment, an iterative two-dimensional equalization scheme is proposed based on the contraction mapping theorem. In order to evaluate the performance of the proposed scheme, for various holographic channel environments we measure the BER performance using computer simulation and compare the proposed one with the conventional threshold detection scheme, which verifies the superiority of the proposed scheme.

Synthesis and application of Pt and hybrid Pt-$SiO_2$ nanoparticles and control of particles layer thickness (Pt 나노입자와 Hybrid Pt-$SiO_2$ 나노입자의 합성과 활용 및 입자박막 제어)

  • Choi, Byung-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.4
    • /
    • pp.301-305
    • /
    • 2009
  • Pt nanoparticles with a narrow size distribution (dia. ~4 nm) were synthesized via an alcohol reduction method and used for the fabrication of hybrid Pt-$SiO_2$ nanoparticles. Also, the self-assembled monolayer of Pt nanoparticles (NPs) was studied as a charge trapping layer for non-volatile memory (NVM) applications. A metal-oxide-semiconductor (MOS) type memory device with Pt NPs exhibits a relatively large memory window. These results indicate that the self-assembled Pt NPs can be utilized for NVM devices. In addition, it was tried to show the control of thin-film thickness of hybrid Pt-$SiO_2$ nanoparticles indicating the possibility of much applications for the MOS type memory devices.

  • PDF

Statistical analysis for small power module (소형전원장치에 대한 통계적 분석)

  • Shin, Jae-Kyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.735-740
    • /
    • 2011
  • In recent, electronic devices were able to develop and focus for ultra-compact size, intelligence, multifunction and broadband. Their SMPS is realized to ultra-compact size, light weight, high efficiency, high reliability, low noises. The power module which can be used to supply DC output from a commercial power supply (85 to 265 VAC). A switching power supply can be made easily by adding simply external circuit, such as microcontroller, a relay, etc. It would be apply to mostly electronic devices, and fit the global project "Saving energy". But we need to statistical analysis for a quality and performance about a load and an output voltage in product.

Combinatorial studies on the work function characteristics for Nb or Zn doped indium-tin oxide electrodes

  • Heo, Gi-Seok;Kim, Sung-Dae;Park, Jong-Woon;Lee, Jong-Ho;Kim, Tae-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.159-159
    • /
    • 2008
  • Indium-tin oxides (ITO) films have been widely used as transparent electrodes for optoelectronic devices such as organic light emitting diodes (OLEDs), photovoltaics, touch screen devices, and flat-paneldisplay. In particular, to improve hole injection efficiency in OLEDs, transparent electrodes should have high work-function besides their transparency and low resistivity. Nevertheless, few studies have been made on engineering the work function of ITO for use as an efficient anode. In this study, the effects of a wide range of Nb or Zn doping rate on the changes in work functions of ITO anode were investigated. The Nb or Zn doped ITO films were fabricated on glass substrates using combinatorial sputtering system which yields a linear composition spread of Nb or Zn concentration in ITO films in a controlled manner by co-sputtering two targets of ITO and Nb2O5 or ITO and ZnO. We have also examined the resistivity, transmittance, and other structural properties of the Nb or Zn-doped ITO films. Furthermore, OLEDs employing Nb or Zn-doped ITO anodes were fabricated and the device performances were investigated concerned with the work function changes.

  • PDF

Fabrications of Pd/poly 3C-SiC schottky diodes for hydrogen gas sensor at high temperatures (고온 가스센서용 Pd-다결정 3C-SiC 쇼트키 다이오드 제작)

  • Ahn, Jeong-Hak;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.78-79
    • /
    • 2008
  • In this paper, poly 3C-SiC thin films were grown on $SiO_2$/Si by atmospheric pressure chemical vapor deposition (APCVD) using HMDS, $H_2$, and Ar gas at $1100^{\circ}C$ for 30 min, respectively. And then, palladium films were deposited on poly 3C-SiC by RF magnetron sputter. Thickness, uniformity, and quality of these samples were performed by SEM. Crystallinity and preferred orientationsof palladium were analyzed by XRD. And Pd/poly 3C-SiC schottky diodes were fabricated and characterized by current-voltage measurements. Its electric current density Js and barrier height voltage were measured as $2\times10^{-3}$ A/$cm^2$, 0.58 eV, respectively. And these devices operated about $350^{\circ}C$. From results, Pd/poly 3C-SiC devices are promising for high temperature hydrogen sensor and applications.

  • PDF

Fabrication of CNT/PVDF Composite Film and Its Electrical Properties (CNT/PVDF 압전 복합막의 제작과 전기적 특성)

  • Lee, Sunwoo;Jung, Nak-Chun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.620-623
    • /
    • 2013
  • The carbon nanotube / poly-vinylidene fluoride (CNT/PVDF) composite films for the nano-generator devices were fabricated by spray coating method using the CNT/PVDF solution, which was prepared by adding PVDF pellets into the CNT dispersed N-Methyl-2-pyrroli-done (NMP) solution. The flexible CNT/PVDF composite films were investigated by the scanning electron microscopy, which revealed that the CNTs were uniformly dispersed in the PVDF matrix and thickness of the films was approximately $20{\mu}m$. Fourier transform infra-red spectra were used to investigate crystal structure of the as-spray-coated CNT/PVDF films, and we found that they revealed extremely large portion of the ${\beta}$ phase PVDF. The capacitance of the CNT/PVDF films increased by adding CNTs into the PVDF matrix, and finally saturated. However, the resistance didn't show any saturation effect in the CNT concentration range of 0~4 wt%. Finally, the resulting nano-generator devices revealed reasonable current output after given mechanical stress.

The Optimal Design of High Voltage Non Punch Through IGBT and Field Stop IGBT (고전압 Non Punch Through IGBT 및 Field Stop IGBT 최적화 설계에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.214-217
    • /
    • 2017
  • An IGBT (insulated gate bipolar transistor) device has an excellent current-conducting capability. It has been widely employed as a switching device to use in power supplies, converters, solar inverters, and household appliances or the like, designed to handle high power. The aim with IGBT is to meet the requirements for use in ideal power semiconductor devices with a high breakdown voltage, an on-state voltage drop, a high switching speed, and high reliability for power-device applications. In general, the concentration of the drift region decreases when the breakdown voltage increases, but the on-resistance and other characteristics should be reduced to improve the breakdown voltage and on-state voltage drop characteristics by optimizing the design and structure changes. In this paper, using the T-CAD, we designed the NPT-IGBT (non punch-through IGBT) and FS-IGBT (field stop IGBT) and analyzed the electrical characteristics of those devices. Our analysis of the electrical characteristics showed that the FS-IGBT was superior to the NPT-IGBT in terms of the on-state voltage drop.

A Manufacturing Process Model of Internet of Things Devices Using a PCB-mounted RFID Tag Chip (PCB 부착형 RFID 태그 칩을 이용한 사물인터넷 디바이스 생산 공정에 대한 모델)

  • Park, Yungi;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.674-675
    • /
    • 2016
  • In this paper, we propose a manufacturing process model of Internet of Things devices using a Printed Circuit Board (PCB)-mounted RFID tag chip for reducing electronic wastes. Electrical and electronic products require a PCB surface mount and many examination. Also, conventional barcode systems cannot provide traceability management in PCB manufacturing before finishing Surface Mount Technology (SMT) process. The proposed process model does not require workers' attaching and detaching process unlike barcode systems. Also, RFID tag chip can record all the data in manufacturing steps. Thus, the number of connections to a database management system (DBMS) can be reduced.

  • PDF