• 제목/요약/키워드: Electronic consumption

검색결과 1,137건 처리시간 0.038초

Clock-gating 을 고려한 저전력 8-bit 마이크로프로세서 설계에 관한 연구 (The study on low power design of 8-bit Micro-processor with Clock-Gating)

  • 전종식
    • 한국전자통신학회논문지
    • /
    • 제2권3호
    • /
    • pp.163-167
    • /
    • 2007
  • 본 논문에서는 전력 소비를 감소시킬 수 있는 클럭게이팅 기법을 제안하여 8bit RISC 마이크로프로세서를 설계하였다. 제안된 설계 방법의 타당성을 검토하기 위해서 저전력을 고려하지 않은 8비트 마이크로프로세서와 클록 게이팅을 이용한 저전력 8비트 마이크로프로세서를 설계하여 소모 전력을 비교하였다. 기존의 마이크로 프로세서와 저전력으로 설계된 마이크로프로세서와의 소모 전력을 비교한 결과 시간에 대하여 비교하였을 경우 동적 소모 전력에 대하여 21.56% 감소를 얻을 수 있었다.

  • PDF

센서 시스템을 위한 저전력 고신뢰의 비동기 디지털 회로 설계 (Low Power Reliable Asynchronous Digital Circuit Design for Sensor System)

  • 안지혁;김경기
    • 센서학회지
    • /
    • 제26권3호
    • /
    • pp.209-213
    • /
    • 2017
  • The delay-insensitive Null Convention Logic (NCL) asynchronous design as one of innovative asynchronous logic design methodologies has many advantages of inherent robustness, power consumption, and easy design reuses. However, transistor-level structures of conventional NCL gate cells have weakness of high area overhead and high power consumption. This paper proposes a new NCL gate based on power gating structure. The proposed $4{\times}4$ NCL multiplier based on power gating structure is compared to the conventional NCL $4{\times}4$ multiplier and MTNCL(Multi-Threshold NCL) $4{\times}4$ multiplier in terms of speed, power consumption, energy and size using PTM 45 nm technology.

이중 ?치를 이용한 변압기형 초전도 한류기의 권선전류와 초전도소자 저항에 따른 전력소모 및 누적에너지 분석 (Analysis on Power Consumption and Accumulated Energy According to Resistance of Superconducting Element and Winding Current of Transformer Type SFCL Using Double Quench)

  • 한태희;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제29권10호
    • /
    • pp.630-634
    • /
    • 2016
  • In this paper, we analyzed the power consumption and the accumulated energy in HTSC (high-TC superconducting elements) according to the resistance of HTSC element and the winding current of transformer type SFCL (superconducting fault current limiter) using double quench. For the analysis, two different inductances of the one secondary winding among two secondary windings comprising the transformer type SFCL were selected and the short-circuit tests were carried out. The consumed power and the accumulated energy in HTSC element connected into the secondary winding with larger inductance were analyzed to be larger compared to the one connected into the secondary winding with lower inductance.

고온용 저전력소비형 3C-SiC 마이크로 히터의 설계 (Design on ultra low power consumption microhotplates based on 3C-SiC for high temperatures)

  • 정재민;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.385-386
    • /
    • 2008
  • This paper reports the design of the ultra low power consumption microhotplates for high temperatures. The microhotplates consisting of a platinum-based heating element on AlN/poly 3C-SiC layers were designed. The microhotplate is a $600\times600{\mu}m^2$ square shaped membrane made of $1{\mu}m$ thick ploy 3C-SiC suspended by four legs. The microhotplate was compared with $Si_3N_4/SiO_2/Si_3N_4$(NON) structure microhotplate by COMSOL simulation system. Thermal uniformity, power consumption and thermal characterizations of microhotplates based on 3C-SiC thin film are better than microhotplates with NON structure.

  • PDF

Delay Monitor Scheme을 사용한 Register Controlled Delay-locked Loop (Register Controlled Delay-locked Loop using Delay Monitor Scheme)

  • 이광희;노주영;손상희
    • 한국전기전자재료학회논문지
    • /
    • 제17권2호
    • /
    • pp.144-149
    • /
    • 2004
  • Register Controlled DLL with fast locking and low-power consumption, is described in this paper. Delay monitor scheme is proposed to achieve the fast locking and inverter is inserted in front of delay line to reduce the power consumption, also. Proposed DLL was fabricated in a 0.6${\mu}{\textrm}{m}$ 1-poly 3-metal CMOS technology. The proposed delay monitor scheme enables the DLL to lock to the external clock within 4 cycles. The power consumption is 36㎽ with 3V supply voltage at 34MHz clock frequency.

자계가 인가된 원통형 플라즈마 반응기에서 질소산화물(NOx)의 제거특성 (A removal characteristics of NOx at the cylinderical plasma reactor with magnetic field)

  • 이동훈;이태관;오정민;이두희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 방전 플라즈마 유기절연재료 초전도 자성체연구회
    • /
    • pp.104-108
    • /
    • 2004
  • The effect of magnetic field was measured on NOx removal for cylinder-wire plasma reactor with magnetic field applied to electric field vertically. Power was supplied to plasma reactor using rotating spark gap switch. Consumption power increased with increasing discharge voltage. When magnetic field was applied to electric field vertically, consumption power was less than that without magnetic field because of lorenz's force. NOx removal rate of plasma reactor with magnetic field were higher, 10-15%, than that of plsama reactor without magnetic field. And NOx removal rate decreased with increasing gas flow rate.

  • PDF

고속응답, 저소비전력형 마이크로 유속센서의 제작과 그 특성 (The fabrication of high-response time, low consumption power, microflowsensor and its characteristics)

  • 홍석우;김병태;김길중;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.343-346
    • /
    • 2000
  • This paper presents the characteristics of low consumption, high-response time hot-film type micro-flowsensors with SOI(Si-on-insulator) and trench structures. Output voltages increased due to increase of heat-loss from sensor to external. Compared with no-trench on the SOI structure, the micro-flowsensors with trench structures have properties of high output voltage and low consume power. Output voltage of micro-flowsensors with SOI and trench structures was 250 mV at $N_2$ flow rate of 2000 sccm/min, heating power of 0.3 W. The response time was about 85 msec when input flow was step-input.

  • PDF

Development of Energy-sensitive Cluster Formation and Cluster Head Selection Technique for Large and Randomly Deployed WSNs

  • Sagun Subedi;Sang Il Lee
    • Journal of information and communication convergence engineering
    • /
    • 제22권1호
    • /
    • pp.1-6
    • /
    • 2024
  • Energy efficiency in wireless sensor networks (WSNs) is a critical issue because batteries are used for operation and communication. In terms of scalability, energy efficiency, data integration, and resilience, WSN-cluster-based routing algorithms often outperform routing algorithms without clustering. Low-energy adaptive clustering hierarchy (LEACH) is a cluster-based routing protocol with a high transmission efficiency to the base station. In this paper, we propose an energy consumption model for LEACH and compare it with the existing LEACH, advanced LEACH (ALEACH), and power-efficient gathering in sensor information systems (PEGASIS) algorithms in terms of network lifetime. The energy consumption model comprises energy-sensitive cluster formation and a cluster head selection technique. The setup and steady-state phases of the proposed model are discussed based on the cluster head selection. The simulation results demonstrated that a low-energy-consumption network was introduced, modeled, and validated for LEACH.

Enabling Fine-grained Access Control with Efficient Attribute Revocation and Policy Updating in Smart Grid

  • Li, Hongwei;Liu, Dongxiao;Alharbi, Khalid;Zhang, Shenmin;Lin, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권4호
    • /
    • pp.1404-1423
    • /
    • 2015
  • In smart grid, electricity consumption data may be handed over to a third party for various purposes. While government regulations and industry compliance prevent utility companies from improper or illegal sharing of their customers' electricity consumption data, there are some scenarios where it can be very useful. For example, it allows the consumers' data to be shared among various energy resources so the energy resources are able to analyze the data and adjust their operation to the actual power demand. However, it is crucial to protect sensitive electricity consumption data during the sharing process. In this paper, we propose a fine-grained access control scheme (FAC) with efficient attribute revocation and policy updating in smart grid. Specifically, by introducing the concept of Third-party Auditor (TPA), the proposed FAC achieves efficient attribute revocation. Also, we design an efficient policy updating algorithm by outsourcing the computational task to a cloud server. Moreover, we give security analysis and conduct experiments to demonstrate that the FAC is both secure and efficient compared with existing ABE-based approaches.

사물인터넷 환경에서 에너지 소모량을 줄이기 위한 네트워크 부호화 기반 정보 공유 방식 (Network Coding-Based Information Sharing Strategy for Reducing Energy Consumption in IoT Environments)

  • 김정현;박다빈;송홍엽
    • 한국통신학회논문지
    • /
    • 제41권4호
    • /
    • pp.433-440
    • /
    • 2016
  • 본 논문에서는 사물인터넷 환경에서 통신 기기들이 정보를 직접 공유하고자 할 때 전체 네트워크의 에너지 소모량을 최소화하기 위한 방식을 제안한다. 제안하는 방식은 매 전송 시 동적으로 전송 노드 및 전송 데이터를 선택하는 효과적인 네트워크 부호화 기법을 사용하여 정보 공유에 필요한 총 전송 횟수를 감소시킨다. 실험을 통하여 기존의 고정된 순서로 전송 노드를 설정하는 네트워크 부호화 방식, 랜덤한 순서로 전송 노드를 설정하는 네트워크 부호화 방식, 그리고 랜덤한 순서로 전송 노드를 설정하는 비부호화 방식에 비해 총 전송 횟수 측면에서 보다 뛰어난 성능을 가짐을 확인하였다.