• Title/Summary/Keyword: Electronic Space

Search Result 1,640, Processing Time 0.029 seconds

Supermultiview and Electro-Holographic 3-D Imaging Display (전자 홀로그래피 및 초 다시점 3차원 영상 디스플레이)

  • Son, Jung-Young;Lee, Hyung;Sung, Chang-Kyung;Kim, Jung
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.237-244
    • /
    • 2013
  • Supermultiview and electro-holographic displays are promising displays for the future because they provide continuous parallaxes as their depth cue. But they are still in the early development stage due to the lack of supporting technologies. Achieving the continuous parallax in the supermultiview relies more on the number and size of pixels in the pixel cell/elemental image rather than the number of different view images. For the electro-holographic display, it also relies on the number and size of pixels in the panel. So these two methods share the same requirements for achieving the parallax. But the image displayed on the holographic display provides more impressive visual appeal than that on the supermultiview because the image can be floated on the front space of the display.

Use of Adaptive Meshes in Simulation of Combustion Phenomena

  • Yi, Sang-Chul;Koo, Sang-Man
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.285-309
    • /
    • 1996
  • Non oxide ceramics such as nitrides of transition metals have shown significant potential for future economic impact, in diverse applications in ceramic, aerospace and electronic industries, as refractory products, abrasives and cutting tools, aircraft components, and semi-conductor substrates amid others. Combustion synthesis has become an attractive alternative to the conventional furnace technology to produce these materials cheaply, faster and at a higher level of purity. However he process os highly exothermic and manifests complex dynamics due to its strongly non-linear nature. In order to develop an understanding of this process and to study the effect of operational parameters on the final outcome, numerical modeling is necessary, which would generated essential knowledge to help scale-up the process. the model is based on a system of parabolic-hyperbolic partial differential equations representing the heat, mass and momentum conservation relations. The model also takes into account structural change due to sintering and volumetric expansion, and their effect on the transport properties of the system. The solutions of these equations exhibit steep moving spatial gradients in the form of reaction fronts, propagating in space with variable velocity, which gives rise to varying time scales. To cope with the possibility of extremely abrupt changes in the values of the solution over very short distances, adaptive mesh techniques can be applied to resolve the high activity regions by ordering grid points in appropriate places. To avoid a control volume formulation of the solution of partial differential equations, a simple orthogonal, adaptive-mesh technique is employed. This involves separate adaptation in the x and y directions. Through simple analysis and numerical examples, the adaptive mesh is shown to give significant increase in accuracy in the computations.

  • PDF

A Study on the Evaluation and Improvement of Student Convenient Facilities at University Campuses, based on Universal Design Concept - Focused on the university campuses in Texas, U.S.A. - (유니버설디자인 개념에 의거한 대학내 학생편의시설 평가 및 개선방향에 대한 연구 - 미국 텍사스주를 중심으로 -)

  • Kim, Won-Pil
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.21 no.3
    • /
    • pp.19-28
    • /
    • 2014
  • Student halls and their convenient facilities have been a focal point for various student activities at university campus. It has been for most of the student a place of unique memories and of attachment often associated with those good and bad school days. However, it is questionable whether these facilities are supportive and accessible for all of the students and other users including the handicapped. Therefore, based on the concept of UD(universal design) which was widely applied to U.S. institutions, this study intended to evaluate student hall facilities in U.S. and to provide an improvement direction for Korean UD application. For that purpose, four universities were selected for an in-depth analysis and 76 survey indices were utilized based on previous research. It was found that (1) design consideration without braille sign for VIP(visually impaired person) in student buildings can be differently approached with electronic devices; (2) the best demonstration of UD in student buildings can be seen in spacious flat pathway, easy access through ramp and wide entry area, necessary for people in wheel-chairs, but used by all, implying an increase of the ratio of public space; (3) one of the good UD features is an attractive physical environment rather than institutional appearance, in which they ultimately will support and completely adaptable at optimal levels by everyone; (4) consistent maintenance and management maximize the potential of UD principles and minimize physical limitations.

Heterogeneous Device Packaging Technology for the Internet of Things Applications (IoT 적용을 위한 다종 소자 전자패키징 기술)

  • Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • The Internet of Things (IoT) is a new technology paradigm demanding one packaged system of various semiconductor and MEMS devices. Therefore, the development of electronic packaging technology with very high connectivity is essential for successful IoT applications. This paper discusses both fan-out wafer level packaging (FOWLP) and 3D stacking technologies to achieve the integrattion of heterogeneous devices for IoT. FOWLP has great advantages of high I/O density, high integration, and design flexibility, but ultra-fine pitch redistribution layer (RDL) and molding processes still remain as main challenges to resolve. 3D stacking is an emerging technology solving conventional packaging limits such as size, performance, cost, and scalability. Among various 3D stacking sequences wafer level via after bonding method will provide the highest connectivity with low cost. In addition substrates with ultra-thin thickness, ultra-fine pitch line/space, and low cost are required to improve system performance. The key substrate technologies are embedded trace, passive, and active substrates or ultra-thin coreless substrates.

The Camera Calibration Parameters Estimation using The Projection Variations of Line Widths (선폭들의 투영변화율을 이용한 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Moon, Sung-Young;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2372-2374
    • /
    • 2003
  • With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as focal length, scale factor, pose, orientations, and distance. But, radial lens distortion is not modeled. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1,2,3,4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.

  • PDF

Characterization of EFG Si Solar Cells

  • Park, S.H.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.1-10
    • /
    • 1996
  • Solar cells made of the edge-defined film-fed growth Si are characterized using current-voltage, surface photovoltage, electron beam induced current, electron microprobe, scanning electron microscopy, and electron backscattering. The weak temperature dependence of the I-V curves in the EFG solar cells is due to a voltage variable shunt resistance giving higher diode ideality factors than the ideal one. The voltage variable shunt resistance is modeled by a modified recombination mechanism which includes carrier tunneling to distributed impurity energy states in the band gap within the space-charge region. The junction integrity and the substrate quality are characterized simultaneously by combining I-V and surface photovoltage (SPV) measurements. The diode ideality factors and the surface photovoltages characterize the junction integrity while the SPV diffusion lengths characterizes the substrate quality. Most of the measured samples show the voltage variable shunt resistance although how serious it is depends on the solar cell efficiency. The voltage variable shunt resistance is understood as one of the most important factors of the degradation of EFG solar cells.

  • PDF

A Study on the Type of Playable Furniture for Emotional Development of Preschool Children (미취학 아동의 감성 발달을 위한 연령별 놀이가구 유형에 관한 연구)

  • Kim, Ja Kyung
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.3
    • /
    • pp.70-81
    • /
    • 2016
  • Nowadays the preschool children spend much of the day playing indoors. Therefore, it needs the indoor environment that helps a variety of fun activities and physical development, and it requires the space configuration and playable furniture considering the emotional development for mental health. However, the furniture for fast growing preschoolers has not various types because the domestic furniture market for children is mostly baby beds and the furniture for the education of children. Therefore, this study presents the concepts and types of the playable furniture reflecting emotional design for preschool children's healthy emotion and suggests the most appropriate type of playable furniture considering play behavior by age. In this study, we investigated the physical, cognitive, social, emotional and linguistic development characteristics and play behavior of preschoolers, and derived the right type of playground equipment and furniture, and examined the types of playable furniture to help the emotional development. We derived the items to be checked for developing the playable furniture by age for emotional development, and classified preschoolers' playable furniture into the use of learning, relaxation and storage, and suggested its basic type focusing on the cases of various playable furniture developed at home and abroad. As a result, the playable furniture was divided into three types. The first is the self-play type making possible self amusement, the second is module built-up-type that consists of furniture and modules or units and creates various patterns and can be modified through the self-assembly and disassembly, and the third is IT game type grafting IT skills and a variety of electronic games to furniture. We sorted these types into three classes (1-3 years old, 4-5, 6-7) according to age and presented the type of play for each age, the play element and representative image that can be introduced to this furniture. In this study, we provided the basic design types of age-specific emotional playable furniture by analyzing these results.

Identification of Fuzzy-Radial Basis Function Neural Network Based on Mountain Clustering (Mountain Clustering 기반 퍼지 RBF 뉴럴네트워크의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • This paper concerns Fuzzy Radial Basis Function Neural Network (FRBFNN) and automatic rule generation of extraction of the FRBFNN by means of mountain clustering. In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values (degree of membership) directly rely on the computation of the relevant distance between data points. Also, we consider high-order polynomial as the consequent part of fuzzy rules which represent input-output characteristic of sup-space. The number of clusters and the centers of clusters are automatically generated by using mountain clustering method based on the density of data. The centers of cluster which are obtained by using mountain clustering are used to determine a degree of membership and weighted least square estimator (WLSE) is adopted to estimate the coefficients of the consequent polynomial of fuzzy rules. The effectiveness of the proposed model have been investigated and analyzed in detail for the representative nonlinear function.

  • PDF

Content based Image Retrieval using RGB Maximum Frequency Indexing and BW Clustering (RGB 최대 주파수 인덱싱과 BW 클러스터링을 이용한 콘텐츠 기반 영상 검색)

  • Kang, Ji-Young;Beak, Jung-Uk;Kang, Gwang-Won;An, Young-Eun;Park, Jong-An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.2
    • /
    • pp.71-79
    • /
    • 2008
  • This study proposed a content-based image retrieval system that uses RGB maximum frequency indexing and BW clustering in order to deal with existing retrieval errors using histogram. We split RGB from RGB color images, obtained histogram which was evenly split into 32 bins, calculated and analysed pixels of each area at histogram of R, G, B and obtained the maximum value. We indexed the color information obtained, obtained 100 similar images using the values, operated the final image retrieval system using the total number and distribution rate of clusters. The algorithm proposed in this study used space information using the features obtained from R, G, and B and clusters to obtain effective features, which overcame the disadvantage of existing gray-scale algorithm that perceived different images as same if they have the same frequencies of shade. As a result of measuring the performances using Recall and Precision, this study found that the retrieval rate and priority of the proposed algorithm are more outstanding than those of existing algorithm.

  • PDF

Dynamic Data Path Prediction use Extend EKF Movement Tracing in Net-VE (Net-VE에서 이동궤적을 이용한 동적데이터 경로예측)

  • Song, Sun-Hee;Oh, Haeng-Soo;Park, Kwang-Chae;Kim, Gwang-Jun;Ra, Sang-Dong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • Improved EKF suggests variable path prediction to reduce the event traffic caused by the information sharing among multi-users in networked virtual environment. The three dimensional virtual space is maintained consistently by endless status information exchange among dispersed users, and periodic status transmission brings traffic overhead in network. By using the error between the measured movement trace of dynamic information and the EKF predicted, we propose the method applied to predict the mobile packet of dynamic data which is simultaneously changing. And, the simulation results of DIS dead reckoning algorithms and EKF path prediction is compared here. It followed the specific path and while moving, the proposed method which it proposes predicting with DIS dead reckoning algorithm and to compare to the mobile path of the actual object and it got near it predicts the possibility of knowing it was.

  • PDF