• Title/Summary/Keyword: Electron-beam resist

Search Result 51, Processing Time 0.027 seconds

Control of Nanospacing in TiO2 Nanowire Array Using Electron Beam Lithography

  • Yun, Young-Shik;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.430.1-430.1
    • /
    • 2014
  • According to advanced nanotechnology in the field of biomedical engineering, many studies of the interaction between topography of surfaces and cellular responses have been focused on nanostructure. In order to investigate this interaction, it is essential to make well-controlled nanostructures. Electron beam lithography (EBL) have been considered the most typical processes to fabricate and control nano-scale patterns. In this work, $TiO_2$ nanowire array was fabricated with hybrid process (top-down and bottom-up processes). Nanodot arrays were patterned on the substrate by EBL process (top-down). In order to control the spacing between nanodots, we optimized the EBL process using Poly(methyl methacrylate) (PMMA) as an electron beam resist. Metal lift-off was used to transfer the spacing-controlled nanodots as a seed pattern of $TiO_2$ nanowire array. Au or Sn nanodots which play an important role for catalyst using Vapor-Liquid-Solid (VLS) method were patterned on the substrate through the lift-off process. Then, the sample was placed in the tube furnace and heated at the synthesis temperature. After heat treatment, $TiO_2$ nanowire array was fabricated from the nanodots through VLS method (bottom-up). These results of spacing-controlled nanowire arrays will be used to study the interaction between nanostructures and cellular responses in our next steps.

  • PDF

Multiple Electron Beam Lithography for High Throughput (생산성 향상을 위한 멀티빔 리소그라피)

  • Choi, Sang-Kook;Yi, Cheon-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.235-238
    • /
    • 2005
  • A Multiple electron beam lithography system with arrayed microcolumns has been developed for high throughput applications. The small size of the microcolumn opens the possibility for arrayed operation on a scale commensurate. The arrayed microcolumns based on of Single Column Module (SCM) concept has been fabricated and successfully demonstrated. Low energy microcolumn lithography has been operated in the energy range from 250 eV to 300 eV for the generation of nano patterns. Probe beam current at the sample was measured about >1 nA at a total beam current of $0.5\;{\mu}A$ and a working distance of $\~1\;mm$. The magnitude of probe beam current is strong enough for the low energy lithography. The thin layers of PMMA resist have been employed. The results of nano-patterning by low energy microcolumn lithography will be discussed.

Method of selective electron beam pattering on a single nanowire. (전자빔을 이용한 단일 나노선상 선택적 패터닝 방법)

  • Kim, Kang-Hyun;Yim, Chang-Young;Won, Boone;Kim, Gyu-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.44-47
    • /
    • 2004
  • 단일 나노선 연구에 있어서 나노선에 원하는 패턴을 선택적으로 구현하는 새로운 방법을 소개한다. 기존에 많이 쓰였던 SEM(Scanning Electron Microscope) 사진을 통한 나노선의 위치를 찾는 방법은 전자빔에 의해 유도되는 비결정성 탄소입자 등으로 인해 측정하고자하는 나노선의 전기적 특성을 왜곡시킬 수 있다. 이러한 점을 예방하고 작업의 편리성을 위하여 ER(E-beam Resist)이 코팅된 상태에서 바로 SEM을 이용해 패터닝하는 방법을 고안하였다. 또 다른 방법으로 기존의 AFM(Atomic Force Microscope) 사진으로 위치를 찾는 방식의 단점인 긴 작업시간을 개선하기 위해 광학현미경 사진을 이용해 패터닝하는 방법을 고안하였다. 이러한 방법들은 작업의 편리성이나 패턴의 정확도면에서 서로 보완적인 성격을 가지고 있어 필요에 따라 방법을 선택할 수 있다.

  • PDF

Fabrication technology of the focusing grating coupler using single-step electron beam lithography (Single-step 전자빔 묘화 장치를 이용한 Focusing Grating Coupler 제작 연구)

  • Kim, Tae-Youb;Kim, Yark-Yeon;Sohn, Yeung-Joon;Han, Gee-Pyeong;Paek, Mun-Cheol;Kim, Hae-Sung;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.976-979
    • /
    • 2002
  • A focusing grating coupler (FGC) was not fabricated by the 'Continuous Path Control' writing strategy but by an electron-beam lithography system of more general exposure mode, which matches not only the address grid with the grating period but also an integer multiple of the address grid resolution (5 nm), To more simplify the fabrication, we are able to reduce a process step without large decrease of pattern quality by excluding a conducting material or layer such as metal (Al, Cr, Au), which are deposited on top or bottom of an e-beam resist to prevent charge build-up during e-beam exposure. A grating pitch period and an aperture feature size of the FGC designed and fabricated by e-beam lithography and reactive ion etching were ranged over 384.3 nm to 448.2 nm, and $0.5{\times}0.5mm^2$ area, respectively, This fabrication method presented will reduce processing time and improve the grating quality by means of a consideration of the address grid resolpution, grating direction, pitch size and shapes when exposing. Here our investigations concentrate on the design and efficient fabrication results of the FGC for coupling from slab waveguide to a spot in free space.

  • PDF

Fabrication Technology of the Focusing Grating Coupler using Single-step Electron Beam Lithography

  • Kim, Tae-Youb;Kim, Yark-Yeon;Han, Gee-Pyeong;Paek, Mun-Cheol;Kim, Hae-Sung;Lim, Byeong-Ok;Kim, Sung-Chan;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.30-37
    • /
    • 2002
  • A focusing grating coupler (FGC) was not fabricated by the 'Continuous Path Control'writing strategy but by an electron-beam lithography system of more general exposure mode, which matches not only the address grid with the grating period but also an integer multiple of the address grid resolution (5 nm). To more simplify the fabrication, we are able to reduce a process step without large decrease of pattern quality by excluding a conducting material or layer such as metal (Al, Cr, Au), which are deposited on top or bottom of an e-beam resist to prevent charge build-up during e-beam exposure. A grating pitch period and an aperture feature size of the FGC designed and fabricated by e-beam lithography and reactive ion etching were ranged over 384.3 nm to 448.2 nm, and 0.5 $\times$ 0.5 mm$^2$area, respectively. This fabrication method presented will reduce processing time and improve the grating quality by means of a consideration of the address grid resolution, grating direction, pitch size and shapes when exposing. Here our investigations concentrate on the design and efficient fabrication results of the FGC for coupling from slab waveguide to a spot in free space.

Formation of the functional plasma ploymerized thin films by a new type reactor (새로운 반응장치를 이용한 기능성 플라즈마 중합막의 제작)

  • 김종택;이상희;박종관;박구범;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.72-76
    • /
    • 1998
  • A new gas-flow type reactor for plasma polymerization was developed to synthesize functional polymers, which enhances reaction of radicals activated in the discharge. Styrene was used for the plasma polymerization and molecular strucure and molecular weight distribution of the plasma -polymerized styrene were studies. The ploymer was evaluated to be an efficient electron beam resist. The sensitivity of the plasma-polymerized styrene film formed by this new reactor was better than that of the reported values of conventional polystyrene, Fine resist patterns could be successfully developed by a wet process.

  • PDF

A Study on Electron-beam Lithography Simulation for Resist Surface Roughness Prediction (Resist 표면 거칠기 예측을 위한 전자빔 리소그라피 시뮬레이션에 관한 연구)

  • Kim, Hak;Han, Chang-Ho;Lee, Ki-Yong;Lee, Woo-Jin;Chun, Kuk-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.45-48
    • /
    • 2002
  • This paper discusses the surface roughness of negative chemically amplified resists, SAL601 exposed by I-beam direct writing. system. Surface roughness, as measured by atomic force microscopy, have been simulated and compared to experimental results. Molecular-scale simulator predicts the roughness dependence on material properties and process conditions. A chemical amplification is made to occur in the resists during PEB process. Monte-Carlo and exposure simulations are used as the same program as before. However, molecular-scale PEB simulation has been remodeled using a two-dimensional molecular lattice representation of the polymer matrix. Changes in surface roughness are shown to correlate with the dose of exposure and tile baking time of PEB process. The result of simulation has a similar tendency with that of experiment.

  • PDF

Study of SiO2 Thin Film Patterning by Low Energy Electron Beam Lithography Using Microcolumns (저 에너지 초소형 전자칼럼 리소그래피를 이용한 SiO2 박막의 Pattern 제작에 관한 연구)

  • Yoshimoto, T.;Kim, H.S.;Kim, D.W.;Ahn, S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.178-181
    • /
    • 2007
  • Electron beam lithography has been studied as a next-generation lithography technology instead of photo lithography for ULSI semiconductor devices. In this work, we have made a low-energy electron beam lithography system based on the microcolumn and investigated the dependence of the pattern thickness on the energies and dose concentration of the electron beam. We have also demonstrated the potential of low-energy lithography by achieving 100 nm-$SiO_2$ thin film patterning.

Nano-mold fabrication for imprinting lithography (나도 Imprinting 을 위한 몰드 제작에 관한 연구)

  • Lee, Jin-Hyung;Lim, Hyun-Uoo;Kim, Tae-Gon;Lee, Seung-Seoup;Park, Jin-Goo;Lee, Eun-Kyu;Kim, Yang-Sun;Han, Chang-Su
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1073-1077
    • /
    • 2003
  • This study aims to investigate the fabrication process of nano silicon mold using electron beam lithography (EBL) to generate the nanometer level patterns by nano-imprinting technology. the nano-patterned mold including 100mm pattern size has been fabricated by EBL with different doses ranged from 22 to 38 ${\mu}C/cm^2$ on silicon using the conventional polymethylmetharcylate(PMMA) resist. The silicon mold is fabricated with various patterns such as circles, rectangles, crosses, oblique lines and mixed forms, The effect of dosage on pattern density in EBL is discussed based on SEM (Scannning Electron Microscopy) analysis of fabricated molds. The mold surface is modified by hydrophobic fluorocarbon (FC) thin films to avoid the stiction during nano-imprinting process.

  • PDF

A study on electron beam lithography for 0.1$\mu\textrm{M}$ T-gate formation at P(MMA/MAA)/PMMA structure (PMMA/P(MMA/MAA) 구조에서 0.1$\mu\textrm{M}$ T-gate 형성을 위한 전자빔 리소그래피 공정에 관한 연구)

  • Choe, Sang-Su;Lee, Jin-Hui;Yu, Hyeong-Jun;Lee, Sang-Yun
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.96-103
    • /
    • 1995
  • This art~cle reports on the formation of T - Gate with O.1$\mu$m foot and 0.4$\mu$m head width at PMMA/P( MMA/MAA) resist structure using a 30KV electron beam lithography system. From the result of Monte Carlo simulation on PMMA/P( MMA/MAA)/GaAs, we obtain the dissipation energy ratio of forwardscattered electron and backscattered electron within 0.1$\mu$m scattering radius is 19.5 : 1 0.1$\mu$m T - gate has been formed with 30KV gaussian electron beam at a 440$\mu C/\textrm{cm}^2$ dosage. The gamma value of PMMA and P(MMA/MAA) at MIBK : IPA=l : 1 developer was 2.3. The overlay accuracy(3$\sigma$) from mix-andmatch of optical stepper and Ekeam lithography system for fabricating HEMT device is accomplished below 0.1$\mu$m.

  • PDF