• Title/Summary/Keyword: Electron energy

Search Result 4,470, Processing Time 0.036 seconds

Properties of AlN epilayer grown on 6H-SiC substrate by mixed-source HVPE method (6H-SiC 기판 위에 혼합소스 HVPE 방법으로 성장된 AlN 에피층 특성)

  • Park, Jung Hyun;Kim, Kyoung Hwa;Jeon, Injun;Ahn, Hyung Soo;Yang, Min;Yi, Sam Nyung;Cho, Chae Ryong;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.96-102
    • /
    • 2020
  • In this paper, AlN epilayers on 6H-SiC (0001) substrate are grown by mixed source hydride vapor phase epitaxy (MS-HVPE). AlN epilayer of 0.5 ㎛ thickness was obtained with a growth rate of 5 nm per hour. The surface of AlN epilayer grown on 6H-SiC (0001) substrate was investigated by field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Dislocation density was considered through HR-XRD and related calculations. A fine crystalline AlN epilayer with screw dislocation density of 1.4 × 109 cm-2 and edge dislocation density of 3.8 × 109 cm-2 was confirmed. The AlN epilayer on 6H-SiC (0001) substrate grown by using the mixed source HVPE method could be applied to power devices.

Adsorption Characteristics of Heavy Metals using Sesame Waste Biochar (참깨 부산물 Biochar의 중금속 흡착특성)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kang, Se-Won;Lee, Sang-Gyu;Seo, Young-Jin;Lim, Byung-Jin;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.8-15
    • /
    • 2013
  • Little research has been conducted to explore the heavy metal removal potential of biochar. The adsorption characteristics of heavy metals by sesame waste biochar (pyrolysis at $600^{\circ}C$ for 1 hour) as heavy metal absorbent were investigated. The sesame waste biochar was characterized by SEM-EDS and FT-IR, and heavy metal removal was studied using Freundlich and Langmuir equations. The removal rates of heavy metals were higher in the order of Pb>Cu>Cd>Zn, showing that the adsorption efficiency of Pb was higher than those of any other heavy metals. Freundlich and Langmuir adsorption isotherms were used to model the equilibrium adsorption data obtained for adsorption of heavy metals on biochar produced from sesame waste. Pb, Cu, Cd and Zn equilibrium adsorption data were fitted well to the two models, but Pb gave a better fit to Langmuir model. Heavy metals were observed on the biochar surface after adsorption by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Main functional groups were aromatic C=O ring (at $1160cm^{-1}$, $1384cm^{-1}$ and $1621cm^{-1}$) by FT-IR analysis. Thus, biochar produced from sesame waste could be useful adsorbent for treating heavy metal wastewaters.

Evaluation of Raw and Calcined Eggshell for Removal of Cd2+ from Aqueous Solution

  • Kim, Youngjung;Yoo, Yerim;Kim, Min Gyeong;Choi, Jong-Ha;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.5
    • /
    • pp.249-258
    • /
    • 2020
  • The potential use of egg shell and calcined egg shell as adsorbent was evaluated and compared to remove Cd2+ from aqueous solution. The samples were characterized using Thermogravimetry and Differential Thermal Analysis (TG/DTA), Scanning Electron Microscope (SEM), X-ray Diffractometer (XRD), Energy Dispersive X-ray Spectrometer (EDX) and BET Surface Analyzer. The batch-type adsorption experiment was conducted by varying diverse variables such as contact time, pH, initial Cd2+ concentrations and adsorbent dosage. The results showed that, under the initial Cd2+ concentrations ranged from 25 to 200 mg g-1, the removal efficiencies of Cd2+ by egg shell powder (ESP) were decreased steadily from 96.72% to 22.89% with increase in the initial Cd2+ concentration at 2.5 g of dosage and 8 h of contact time. However, on the contrary to this, calcined egg shell powder (CESP) showed removal efficiencies above 99% regardless of initial Cd2+ concentration. The difference in the adsorption behavior of Cd2+ may be explained due to the different pH values of ESP and CESP in solution. Cd2+ seems to be efficiently removed from aqueous solution by using the CESP with a basicity nature of around pH 12. It was also observed that an optimum dosage of ESP and CESP for nearly complete removal of Cd2+ from aqueous solution is approximately 5.0 g and 1.0 g, respectively. Consequently, Cd2+ is more favorably adsorbed on CESP than ESP in the studied conditions. Adsorption data were applied by the pseudo-first-order and pseudo-second-order kinetics models and Freundlich and Langmuir isotherm models, respectively. With regard to adsorption kinetics tests, the pseudo-second-order kinetics was more suitable for ESP and CESP. The adsorption pattern of Cd2+ by ESP was better fitted to Langmuir isotherm model. However, by contrast with ESP, CESP was described by Freundlich isotherm model well.

On the effect of saline immersion to the removal torque for resorbable blasting media and acid treated implants (Resorbable blasting media 및 산처리한 임플란트의 제거회전력에 생리식염수를 적시는 것이 미치는 영향)

  • Kwon, Jae-uk;Cho, Sung-am
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the effect of the titanium implant soaked in saline after RBM and acid etched surface treatment on the initial osseointegration by comparing the removal torque and the surface analysis compared to the titanium implant with only RBM and acid etched surface treatment. Materials and Methods: The control group was RBM and acid etched surface treated implants (RBM + HCl), and the test group was implants soaked in saline for 2 weeks after RBM and acid etched surface treatment (RBM + HCl + Sal). The control and test group implants were placed in the left and right tibiae of 10 rabbits, respectively, and at the same time, the insertion torque (ITQ) was measured. After 10 days, the removal torque (RTQ) was measured by exposing the implant site. FE-SEM, EDS, Surface roughness and Raman spectroscopy were performed for the surface analysis of the new implant specimens used in the experiments. Results: There was significant difference in insertion torque and removal torque between control group and experimental group (P = 0.014 < 0.05). Surface roughness of experimental group is higher than control group. Conclusion: Saline soaking after RBM and acid etched surface treatment of titanium implants were positively affect the initial osseointegration as compared to titanium implants with only RBM and acid etched surface treatment.

Determination of Reactivities by Molecular Orbital Theory (VI). Sigma MO Treatment on $C_6H_5YCH_2Cl$ (화학반응성의 분자궤도론적 연구 (제 6 보). $C_6H_5YCH_2Cl$ 형 화합물의 시그마분자궤도론적 고찰)

  • Lee, Ikc-Hoon;Lee, Bon-Su;Lee, Jae-Eui
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.85-96
    • /
    • 1974
  • Extended H ckel Theory and CNDO/2 MO calculation methods have been applied to $C_6H_5YCH_2Cl$(Y = None, -$CH_2$-, -O-, -S-, -CO-, -$SO_2$-). It has been shown that charge distributions in molecules are mainly controlled by the migration of valence inactive electron, giving the order of ${\sigma}$-acceptor and ${\pi}$-donor effects -O- > -S- > -$CH_2$- > -$SO_2$-. The -CO- group exceptionally acts as ${\sigma}$-donor and ${\pi}$-acceptor. It was also predicted that, $S_N2$ reactivities of C$C_6H_5YCH_2Cl$ would be in the order of -O-${\thickapprox}$-CO- >>-S-${\thickapprox}$None > -$CH_2$-, neglecting solvent effect. From the results of our studies, we conclude that the structural factors influencing 의 $S_N$ reactivities will be: (1) positive charge developments on reaction center carbon atom (2) energy level of ${\sigma}$-antibonding unoccupied MO with respect to C-Cl bond. (3) ${\sigma}$-antibonding strength of C-Cl bond at that level.

  • PDF

Ordinary Magnetoresistance of an Individual Single-crystalline Bi Nanowire (자발 성장법으로 성장된 단결정 Bi 단일 나노선의 정상 자기 저항 특성)

  • Shim, Woo-Young;Kim, Do-Hun;Lee, Kyoung-Il;Jeon, Kye-Jin;Lee, Woo-Young;Chang, Joon-Yeon;Han, Suk-Hee;Jeung, Won-Young;Johnson, Mark
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.166-171
    • /
    • 2007
  • We report the magneto-transport properties of an individual single crystalline Bi nanowire grown by a spontaneous growth method. We have successfully fabricated a four-terminal device based on an individual 400-nm-diameter nanowire using plasma etching technique to remove an oxide layer forming on the outer surface of the nanowire. The transverse MR (2496% at 110 K) and longitudinal MR ratios (38% at 2 K) for the Bi nanowire were found to be the largest known values in Bi nanowires. This result demonstrates that the Bi nanowires grown by the spontaneous growth method are the highest-quality single crystalline in the literatures ever reported. We find that temperature dependence of Fermi energy ($E_F$) and band overlap (${\triangle}_0$) leads to the imbalance between electron concentration ($n_e$) and hole concentration ($n_h$) in the Bi nanowire, which is good agreement with the calculated $n_e\;and\;n_h$ from the respective density of states, N(E), for electrons and holes. We also find that the imbalance of $n_e\;and\;n_h$ plays a crucial role in determining magnetoresistance (MR) at T<75 K for $R_T$ and at T<205 K for $R_L$, while mean-free path is responsible for MR at T>75 K for $R_T$ and T>205 K for $R_L$.

Preparation and Characterization of Cellulose Nano-Whiskers Extracted from Microcrystalline Cellulose by Acid Hydrolysis (산 가수분해를 이용하여 microcrystalline cellulose로부터 추출 된 cellulose nano-whisker의 특성분석)

  • Jeong, Hae-Deuk;Yoon, Chang-Rok;Lee, Jong-Hyeok;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • Cellulose nanowhiskers (CNW) gamered increasing interest for their remarkable reinforcement of polymer composites. In this work, we were to produce cellulose whiskers from commercially available microcrystalline cellulose (MCC) by acid hydrolysis with sulfuric and hydrochloric acids. Electron microscopy found that each acid produced sililar cellulose crystals of diameters ranging from 20 to 30 nm and lengths ranging from 200 to 300 nm. Moreover, all samples showed remarkable flow birefringence through crossed polarization filters. Conductometric titration of CNW suspensions revealed that the sulfuric acid treated sample had a surface charge of between 140.00 mmol/kg and 197.78 mmol/kg due to sulfate groups, while that of the hydrochloric acid treated sample was undetectable. Thermogravimetric analysis showed that the thermal decomposition temperature and apparent activation energy (evaluated by Broido's method at different stages of thermal decomposition.) of H1-CNW - prepared by hydrolysis with hydrochloric acid - was higher than those of S1-CNW and S2-CNW - prepared by hydrolyzing MCC with sulfuric acid.

Enhanced Transdermal Delivery of Drug Compounds Using Scalable and Deformable Ethosomes (에토좀 입자크기와 멤브레인 특성 조절을 통한 약물의 경피흡수능 향상)

  • An, Eun-Jung;Shim, Jong-Won;Choi, Jang-Won;Kim, Jin-Woong;Park, Won-Seok;Kim, Han-Kon;Park, Ki-Dong;Han, Sung-Sik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.2
    • /
    • pp.105-113
    • /
    • 2010
  • This study introduces a flexible approach to enhance skin permeation by using ethosomes with deformable lipid membranes as well as controllable sizes. To demonstrate this, a set of ethosomes encapsulating an anti-hair loss ingredient, Triaminodil$^{TM}$, as a model drug, were fabricated with varying their size, which was achieved by solely applying the different level of mechanical energy, while maintaining their chemical composition. After characterization of the ethosomes with dynamic light scattering, transmission electron microscopy, and deformability measurements, it was found that their membrane deformability depended on the particle size. Moreover, studies on in vitro skin permeation and murine anagen induction allowed us to figure out that the membrane deformability of ethosomes essentially affects delivery efficiency of Triaminodil$^{TM}$ through the skin. It was noticeable in our study that there existed an optimum particle size that can not only maximize the delivery of the drug through the skin, but also increase its actual dermatological activity. These findings offer a useful basis for understanding how ethosomes should be designed to improve delivery efficiency of encapsulated drugs therein in the aspects of changing their length scales and membrane properties.

Direct Growth of CNT on Cu Foils for Conductivity Enhancement and Their Field Emission Property Characterization (전도성 향상을 위한 구리호일 위 CNT의 직접성장 및 전계방출 특성 평가)

  • Kim, J.J.;Lim, S.T.;Kim, G.H.;Jeong, G.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.155-163
    • /
    • 2011
  • Carbon nanotubes (CNT) have been attracted much attention since they have been expected to be used in various areas by virtue of their outstanding physical, electrical, and chemical properties. In order to make full use of their prominent electric conductivity in some areas such as electron emission sources, device interconnects, and electrodes in energy storage devices, direct growth of CNT with vertical alignment is definitely beneficial issue because they can maintain mechanical stability and high conductivity at the interface between substrates. Here, we report direct growth of vertically aligned CNT (VCNT) on Cu foils using thermal chemical vapor deposition and characterize the field emission property of the VCNT. The VCNT's height was controlled by changing the growth temperature, growth time, and catalytic layer thickness. Optimum growth condition was found to be $800^{\circ}C$ for 20 min with acetylene and hydrogen mixtures on Fe catalytic layer of 1 nm thick. The diameter of VCNT grown was smaller than that of usual multi walled CNT. Based on the result of field emission characterization, we concluded that the VCNT on Cu foils can be useful in various potential applications where high conductivity through the interface between CNT and substrate is required.

INFLUENCE OF TUNGSTEN CARBIDE/CARBON COATING ON THE PRELOAD OF IMPLANT ABUTMENT SCREWS (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이 전하중에 미치는 영향에 관한 연구)

  • Choi Jin-Uk;Jeong Chang-Mo;Jeon Young-Chan;Lim Jang-Seop;Jeong Hee-Chan;Eom Tae-Gwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.229-242
    • /
    • 2006
  • Statement of problem: In order to increase preload with reducing the friction coefficient, abutment screws coated with pure gold and Teflon as dry lubricant coatings have been introduced. But the reported data indicate that if screw repeated tightening and loosening cycle, an efficiency of increasing preload was decreased by screw surface wearing off. Purpose: This study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on the preload of abutment screws and the stability of coating surface after repeated closures. Material and method: The rotational values of abutment screws and the compressive forces between abutment and fixture were measured in implant systems with three different joint connections, one external butt joint and two internal cones. Moreover the stability and the alteration of coating surface were examined by comparison of the compressive force and the removable torque values during 10 consecutive trials, observation with scanning electron microscope and analyzed the elemental composition with energy dispersive x-ray spectroscopy Results and conclusion: 1. Application of coating resulted in significant increase of compressive force in all implant systems(P<.05). The increasing rate of compressive force by coating in external butt joint was gloater than those in internal cones (P<.05). 2. Coated screw showed the significant additional rotation compared to non-coated screw in all implant systems (P<.05). There were no significant differences in the increasing rate of rotation among implant systems (P>.05). 3. Removable torque values were greater with non-coated screw than that with coated screw (P<.05). 4. Coated screw showed insignificant variations in the compressive forces during 10 consecutive trials(P>.05) 5. After repeated trials, the surface layer of coated screw was maintained relatively well. However surface wearing and irregular titanium fragments were found in non-coated screw.