Browse > Article
http://dx.doi.org/10.14368/jdras.2018.34.1.1

On the effect of saline immersion to the removal torque for resorbable blasting media and acid treated implants  

Kwon, Jae-uk (Department of Prosthodontics, College of Dentistry, Kyung-pook National University)
Cho, Sung-am (Department of Prosthodontics, College of Dentistry, Kyung-pook National University)
Publication Information
Journal of Dental Rehabilitation and Applied Science / v.34, no.1, 2018 , pp. 1-9 More about this Journal
Abstract
Purpose: The purpose of this study is to investigate the effect of the titanium implant soaked in saline after RBM and acid etched surface treatment on the initial osseointegration by comparing the removal torque and the surface analysis compared to the titanium implant with only RBM and acid etched surface treatment. Materials and Methods: The control group was RBM and acid etched surface treated implants (RBM + HCl), and the test group was implants soaked in saline for 2 weeks after RBM and acid etched surface treatment (RBM + HCl + Sal). The control and test group implants were placed in the left and right tibiae of 10 rabbits, respectively, and at the same time, the insertion torque (ITQ) was measured. After 10 days, the removal torque (RTQ) was measured by exposing the implant site. FE-SEM, EDS, Surface roughness and Raman spectroscopy were performed for the surface analysis of the new implant specimens used in the experiments. Results: There was significant difference in insertion torque and removal torque between control group and experimental group (P = 0.014 < 0.05). Surface roughness of experimental group is higher than control group. Conclusion: Saline soaking after RBM and acid etched surface treatment of titanium implants were positively affect the initial osseointegration as compared to titanium implants with only RBM and acid etched surface treatment.
Keywords
implant; hydroxyapatites; acid etching; sodium chloride; rabbits;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Svanborg LM, Andersson M, Wennerberg A. Surface characterization of commercial oral implants on the nanometer level. J Biomed Mater Res B Appl Biomater 2010;92:462-9.
2 Lazzara RJ, Testori T, Trisi P, Porter SS, Weinstein RL. A human histologic analysis of osseotite and machined surfaces using implants with 2 opposing surfaces. Int J Periodontics Restorative Dent 1999;19:117-29.
3 Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent 2000;84:522-34.   DOI
4 Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 2009;20 Suppl 4:172-84.   DOI
5 Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54.   DOI
6 Bagno A, Di Bello C. Surface treatments and roughness properties of Ti-based biomaterials. J Mater Sci Mater Med 2004;15:935-49.
7 Piattelli M, Scarano A, Paolantonio M, Iezzi G, Petrone G, Piattelli A. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits. J Oral Implantol 2002;28:2-8.   DOI
8 Mueller WD, Gross U, Fritz T, Voigt C, Fischer P, Berger G, Rogaschewski S, Lange KP. Evaluation of the interface between bone and titanium surfaces being blasted by aluminium oxide or bioceramic particles. Clin Oral Implants Res 2003;14:349-56.
9 Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11:391-401.
10 Giavaresi G, Fini M, Cigada A, Chiesa R, Rondelli G, Rimondini L, Torricelli P, Aldini NN, Giardino R. Mechanical and histomorphometric evaluations of titanium implants with different surface treatments inserted in sheep cortical bone. Biomaterials 2003;24:1583-94.   DOI
11 Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan BD. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 2005;74:49-58.
12 Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100.   DOI
13 Carlsson L, Rostlund T, Albrektsson B, Albrektsson T. Removal torques for polished and rough itanium implants. Int J Oral Maxillofac Implants 1988;3:21-4.
14 Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct boneto-implant anchorage in man. Acta Orthop Scand 1981;52:155-70.   DOI
15 Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP, Snetivy D, Nolte LP. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res 1999;45:75-83.   DOI
16 Roccuzzo M, Wilson T. A prospective study evaluating a protocol for 6 weeks’ loading of SLA implants in the posterior maxilla: one year results. Clin Oral Implants Res 2002;13:502-7.   DOI
17 Albrektsson T, Branemark PI, Eriksson A, Lindstrom J. The preformed autologous bone graft. An experimental study in the rabbit. Scand J Plast Reconstr Surg 1978;12:215-23.   DOI
18 Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83:529-33.
19 Esposito M, Grusovin MG, Maghaireh H, Worthington HV. Interventions for replacing missing teeth: different times for loading dental implants. Cochrane Database Syst Rev 2013 Mar 28;(3):CD003878.
20 Sanz-Sanchez I, Sanz-Martin I, Figuero E, Sanz M. Clinical efficacy of immediate implant loading protocols compared to conventional loading depending on the type of the restoration: a systematic review. Clin Oral Implants Res 2015;26:964-82.   DOI
21 Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res 1998;41:422-30.   DOI
22 Hansson S, Norton M. The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model. J Biomech 1999;32:829-36.   DOI
23 Albrektsson T, Wennerberg A. The impact of oral implants - past and future, 1966-2042. J Can Dent Assoc 2005;71:327.
24 Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NH. Implant surface roughness and bone healing: a systematic review. J Dent Res 2006;85:496-500.   DOI
25 Choi HC, Jung YM, Kim SB. Size effects in the Raman spectra of $TiO_2$ nanoparticles. Vib Spectrosc 2005;37:33-8.   DOI
26 Yokoyama K, Ichikawa T, Murakami H, Miyamoto Y, Asaoka K. Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomater 2002;23:2459-65.   DOI
27 Mauceri N, Melilli D. Surface treatments for tita-nium implants. Int J Clin Dent 2015;8:139-49.
28 Sullivan DY, Sherwood RL, Mai TN. Preliminary results of a multicenter study evaluating a chemically enhanced surface for machined commercially pure titanium implants. J Prosthet Dent 1997;78:379-86.   DOI