Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.2.155

Direct Growth of CNT on Cu Foils for Conductivity Enhancement and Their Field Emission Property Characterization  

Kim, J.J. (Department of Advanced Materials Science and Engineering, Kangwon National University)
Lim, S.T. (Department of Nuclear Engineering, Seoul National University)
Kim, G.H. (Department of Nuclear Engineering, Seoul National University)
Jeong, G.H. (Department of Advanced Materials Science and Engineering, Kangwon National University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.2, 2011 , pp. 155-163 More about this Journal
Abstract
Carbon nanotubes (CNT) have been attracted much attention since they have been expected to be used in various areas by virtue of their outstanding physical, electrical, and chemical properties. In order to make full use of their prominent electric conductivity in some areas such as electron emission sources, device interconnects, and electrodes in energy storage devices, direct growth of CNT with vertical alignment is definitely beneficial issue because they can maintain mechanical stability and high conductivity at the interface between substrates. Here, we report direct growth of vertically aligned CNT (VCNT) on Cu foils using thermal chemical vapor deposition and characterize the field emission property of the VCNT. The VCNT's height was controlled by changing the growth temperature, growth time, and catalytic layer thickness. Optimum growth condition was found to be $800^{\circ}C$ for 20 min with acetylene and hydrogen mixtures on Fe catalytic layer of 1 nm thick. The diameter of VCNT grown was smaller than that of usual multi walled CNT. Based on the result of field emission characterization, we concluded that the VCNT on Cu foils can be useful in various potential applications where high conductivity through the interface between CNT and substrate is required.
Keywords
Carbon nanotube; Copper foil; Chemical vapor deposition; Conductivity; Field emission;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, J. Am. Chem. Soc. 128, 13338 (2006).   DOI
2 G. D. Nessim, M. Seita, K. P. O'Brien, A. J. Hart, R. K. Bonaparte, R. R. Mitchell, and C. V. Thompson, Nano Lett. 9, 3398 (2009).   DOI
3 H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, and Y. Homma, Nano Lett. 8, 2082 (2008).   DOI
4 C. T. Wirth, C. Zhang, G. Zhong, S. Hofmann, and Robertson, ACS Nano 3, 11 (2009).
5 G. -H. Jeong, N. Olofsson, L. Falk, and E. E. B. Campbell, Carbon 47, 696 (2009).   DOI
6 S. H. Jo, D. Z. Wang, J. Y. Huang, W. Z. Li, K. Kempa, and Z. F. Ren, Appl. Phys. Lett. 85, 810 (2004).   DOI
7 D. Q. Duy, H. S. Kim, D. M. Yoon, K. J. Lee, J. W. Ha, Y. G. Hwang, C. H. Lee, and B. T. Cong, Appl. Sur. Sci. 256, 1065 (2009).   DOI
8 W. Yi and Q. Yang, Diamond. Relat. Mat. 19, 870 (2010).   DOI
9 S. Talapatra, S. Kar, S. K. Pal, R. Vajtai, L. Ci, P. Victor, M. M. Shaijumon, S. Kaur, O. Nalamasu, and P. M. Ajayan, Nat. Nanotechnol. 1, 112 (2006).   DOI
10 P. M. Ajayan, Chem. Rev. 99, 1787 (1999).   DOI
11 D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Science 363, 605 (1993).
12 Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 282, 1105 (1998).   DOI   ScienceOn
13 A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273, 483 (1996).   DOI   ScienceOn
14 W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science 274, 1701 (1996).   DOI   ScienceOn
15 D. B. Geohegan, A. A. Puretzky, I. N. Ivanov, S. Jesse, G. Eres, and J. Y. Howe, Appl. Phys. Lett. 83, 1851 (2003).   DOI
16 S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Science 283, 512 (1999).   DOI   ScienceOn
17 J. Park, S. Kyung, and G. Yeom, J. Korean Vacuum Soc. 15, 374 (2006).
18 S. I. Jung, S. K. Choi, and S. B. Lee, J. Korean Vacuum Soc. 17, 365 (2008).   DOI
19 S. W. Lee, S. H Moon, H. S. Yoon, X. Wang, D. W. Kim, I. S. Yeo, U. I. Chung, J. T. Moon, and J. G. Chung, Appl. Phys. Lett. 91, 263101 (2007).   DOI
20 W. Li, X. Wang, Z. Chen, M. Waje, and Y. Yan, J. Phys. Chem. B 110, 15353 (2006).   DOI
21 C. Masarapu and B. Wei, Langmuir 26, 9046 (2007).
22 W. Yi and Q. Yang, Diam. Relat. Mater. 19, 870 (2010).   DOI
23 L. Gao, A. Peng, Z. Y. Wang, H. Zhang, Z. Shi, Z. Gu, G. Cao, and B. Ding, Solid State Commun. 146, 380 (2008).   DOI