• 제목/요약/키워드: Electron density

검색결과 2,364건 처리시간 0.037초

레이저 용접시 분광학적 수법에 의한 증발입자의 거동과 플라즈마 물성의 계측 (Evaporating Particle Behaviors and plasma Parameters by Spectroscopic Method in laser Welding)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.514-522
    • /
    • 1999
  • The laser-induced plasma affects greatly on the results of welding process. moreover selective evaporation loss of alloying elements leads to change in chemical composition of weld metal as well as the mechanical properties of welded joint. this study was undertaken to obtain a fundamental knowledge of pulsed laser welding phenomena especially evaporation mechanism of different aluminum alloys. The intensities of molecular spectra of AlO and MgO were different each other depeding on the power density of a laser beam Under the low power density condition the MgO band spectrum was predominant in intensity while the AlO spectra became much stronger with an increase in the power density. These behaviors have been attributed to the difference in evaporation phenomena of Al and Mg metals with different boiling points and latent heats of vaporization. The time-averaged plasma temperature and electron number density were determined by spectroscopic methods and consequently the obtained temperature was $3,280{\pm}150K$ and the electron number density was $1.85{\times}10^{19}\;l/m^3$.

  • PDF

고해상도 CRT용 전자총의 히터 및 캐소드 저전력 설계 (Low Power Design on Heater and Cathode of Electron Gun for High Resolution CRT)

  • 김학성
    • 전력전자학회논문지
    • /
    • 제10권6호
    • /
    • pp.618-625
    • /
    • 2005
  • 본 논문은 CRT 표시장치에서 고전류밀도를 구현하기 위한 전자총의 히터와 캐소드의 최적의 저전력설계와 실험을 수행하였다. CRT 표시장치에서 밝기, 고휘도, 고해상도와 대화면화를 위해서는 전자총 캐소드(cathode)의 고전류밀도가 필수적이다. 이를 위해서는 함침형 캐소드가 사용되며, 고전류밀도를 얻기 위해 히터의 동작온도를 높여야하는데 이에 비례하여 소비전력도 증가한다. 본 논문에서는 고전류밀도 캐소드 히터의 저전력 설계를 위하여 히터의 리드형태(Lead Type), 코팅(Coating)법, 발열부의 1차 및 2차 코일링의 피치와 권선수를 달리한 샘플을 제작, 시험하였다.

9%Ni 강의 전자빔 용접성에 관한 연구 (I) - 전자빔 특성과 용입 - (A Study on the Electrom Beam Weldability of 9%Ni Steel (I) - Penetration and Electron Beam Characteristics -)

  • 김숙환;강정윤
    • Journal of Welding and Joining
    • /
    • 제15권3호
    • /
    • pp.79-87
    • /
    • 1997
  • This study was performed to evaluate basic characteristics of electron beam welding process for a 9% Ni steel plate. The principal welding process parameters, such as working distance, accelerating voltage, beam current and welding speed were investigated. The AB (Arata Beam) test method was also applied to characterize beam size and energy density of the electron beam welding process. The electron beam size was found to decrease with the increase of accelerating voltage and the decrease of working distance. So, in case of high voltage (150kV), spot size and energy density of electron beam were revealed to be 0.9mm and $6.5\times10^5W/\textrm{cm}^2$ respectively. The accelerating voltage among the welding parameters was found to be the most important factor governing the penetration depth. When the accelerating voltage of electron beam was low ($\leq$90kV), beam current and welding speed did not affect on the penetration depth significantly. However, in case of high voltage ($\geq$120kV), the depth of penetration increased very sensitively with the increase of beam current and the decrease of welding speed.

  • PDF

Analysis of Electron Transport Coefficients in Binary Mixtures of TEOS Gas with Kr, Xe, He and Ne Gases for Using in Plasma Assisted Thin-film Deposition

  • Tuan, Do Anh
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.455-462
    • /
    • 2016
  • The electron transport coefficients in not only pure atoms and molecules but also in the binary gas mixtures are necessary, especially on understanding quantitatively plasma phenomena and ionized gases. Electron transport coefficients (electron drift velocity, density-normalized longitudinal diffusion coefficient, and density-normalized effective ionization coefficient) in binary mixtures of TEOS gas with buffer gases such as Kr, Xe, He, and Ne gases, therefore, was analyzed and calculated by a two-term approximation of the Boltzmann equation in the E/N range (ratio of the electric field E to the neutral number density N) of 0.1 - 1000 Td (1 Td = 10−17 V.cm2). These binary gas mixtures can be considered to use as the silicon sources in many industrial applications depending on mixture ratio and particular application of gas, especially on plasma assisted thin-film deposition.

Numerical Calculation Study on the Generalized Electron Emission Phenomenon

  • Kim, Hee-Tae;Yu, Soon-Jae
    • Journal of Information Display
    • /
    • 제10권4호
    • /
    • pp.158-163
    • /
    • 2009
  • There are two kinds of well-known electron emissions from metal: field and thermionic emission. For thermionic emission, electrons come out of a metal due to the thermal energy, whereas for field emission, electrons tunnel out of a metal through the strong electric field. In this study, the most general electron emission caused by the temperature and electric field with a free electron gas model was considered. The total current density of electron emission comes from the field emission effect, where the electron energy is lower than vacuum, and from the thermionic-emission effect, where the electron energy is higher than vacuum. The total current density of electron emission is shown as a function of the temperature for a constant electric field, and as a function of the electric field for a constant temperature.

헬리콘 플라즈마에서 이온 펌핑 효과의 영향에 대한 수치적 해석 연구 (Numerical studied on consequenses of the ion pumping effect in helicon plasmas)

  • 조수원;박인호;최성을;권명회
    • 한국진공학회지
    • /
    • 제8권3B호
    • /
    • pp.353-360
    • /
    • 1999
  • The global balance model is applied to investigate the transient behavior of the electron density and temperature in helicon plasmas. The power absorption calculated from the solutions of the Maxwell equations is used in solving the power balance equation. A balance model for the neutral gas is also considered to fins its density self-consistently. It is turned out that the numerical results reasonably explain consequences of the ion pumping effect including the occurrence of two distinct modes of pulsed helicon discharge which have been observed experimentally. The behavior of the discharge parameters are fond to be primarily dependent on the power absorption and the gas flow rate, but the pressure controls the electron density and temperature of the final steady state as well as the transient state even with the same flow rate. Finally, it is shown that the electron density virtually the linear relationship between the density and the magnetic field is retained for a higher pressure when the effect of the ion pumping is negligible.

  • PDF

Analysis of dislocation density in strain-hardened alloy 690 using scanning transmission electron microscopy and its effect on the PWSCC growth behavior

  • Kim, Sung-Woo;Ahn, Tae-Young;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2304-2311
    • /
    • 2021
  • The dislocation density in strain-hardened Alloy 690 was analyzed using scanning transmission electron microscopy (STEM) to study the relationship between the local plastic strain and susceptibility to primary water stress corrosion cracking (PWSCC) in nuclear power plants. The test material was cold-rolled at various thickness reduction ratios from 10% to 40% to simulate the strain-hardening condition of plant components. The dislocation densities were measured at grain boundaries (GB) and in grain interiors of strain-hardened specimens from STEM images. The dislocation density in the grain interior monotonically increased as the strain-hardening proceeded, while the dislocation density at the GB increased with strain-hardening up to 20% but slightly decreases upon further deformation to 40%. The decreased dislocation density at the GB was attributed to the formation of deformation twins. After the PWSCC growth test of strain-hardened Alloy 690, the fraction of intergranular (IG) fracture was obtained from fractography. In contrast to the change in the dislocation density with strain-hardening, the fraction of IG fracture increased remarkably when strain-hardened over 20%. From the results, it was suggested that the PWSCC growth behavior of strain-hardened Alloy 690 not only depends on the dislocation density, but also on the microstructural defects at the GB.

Ionospheric F2-Layer Semi-Annual Variation in Middle Latitude by Solar Activity

  • Park, Yoon-Kyung;Kwak, Young-Sil;Ahn, Byung-Ho;Park, Young-Deuk;Cho, Il-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권4호
    • /
    • pp.319-327
    • /
    • 2010
  • We examine the ionospheric F2-layer electron density variation by solar activity in middle latitude by using foF2 observed at the Kokubunji ionosonde station in Japan for the period from 1997 to 2008. The semi-annual variation of foF2 shows obviously in high solar activity (2000-2002) than low solar activity (2006-2008). It seems that variation of geomagnetic activity by solar activity influences on the semi-annual variation of the ionospheric F2-layer electron density. According to the Lomb-Scargle periodogram analysis of foF2 and Ap index, interplanetary magnetic field (IMF) Bs (IMF Bz <0) component, solar wind speed, solar wind number density and flow pressure which influence the geomagnetic activity, we examine how the geomagnetic activity affects the ionospheric F2-layer electron density variation. We find that the semi-annual variation of daily foF2, Ap index and IMF Bs appear clearly during the high solar activity. It suggests that the semi-annual variation of geomagnetic activity, caused by Russell-McPherron effect, contributes greatly to the ionospheric F2-layer semi-annual electron density variation, except dynamical effects in the thermosphere.

좁은 간격의 고압 DC 글로우 방전에서의 방전물성에 관한 연구 (A Study on the Characteristics of High Pressure DC Glow Discharge with a Narrow Gap)

  • 박재성;정희섭;신범재;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.435-437
    • /
    • 1995
  • It is important to understand tile behaviours of tile high pressure DC glow discharge with a micro gap inside a pixel of the plasmas display panel. We prepared a narrow gap discharge system and have measured electron temperature and density by means of double probe methods in high pressure which was between 100torr and 200torr. And the electrode gap was 7mm. When the pressure varied from 100torr to 200torr, the negative glow was created at a distance less than 1mm from the cathode. And the length of the faraday dark space decreased from 8mm to 5mm. Hence probe measurements was mainly, performed in the region of the Faraday dark space. The dependence of electron temperature and density on the pressure and current density was same with that of the general flow discharge, i.e. as the pressure increased the electron temperature decreased and the density increased. But the spatial electron density distribution in the Faraday dark space was highly distorted because of the effect of high pressure.

  • PDF

EFFECTS OF THE DIFFUSE IONIZING RADIATION ON THE STRUCTURE OF HII REGIONS

  • Hong, S.S.;Sung, H.I.
    • 천문학회지
    • /
    • 제22권2호
    • /
    • pp.127-140
    • /
    • 1989
  • Problem of the diffuse radiation (DFR) transfer is solved exactly for pure hydrogen nebulae of uniform density, and accuracies of the on-the-spot (OTS) approximation are critically examined. For different values of density and spectral types of the central star, we have calculated the degree of ionization and the kinetic temperature of electrons as functions of distance from the central star, and compared them with the corresponding results of the OTS approximation. At most locations inside an HII region. the DFR ionizes considerable amount of hydrogen; therefore, the OTS approximation under-estimates the size of ionized regions. The exact treatment of the DFR transfer results in an about 10 to 20 percent increase in the classical $Str{\ddot{o}}mgren$ radius. The OTS approximation overestimates the local heating rate by raising the density of neutral hydogens. Consequently, it predicts higher values for the local electron temperature. The OTS approximation also exaggerates the dependence of electron temperature on density. When the hydrogen density is changed from $10/cm^3$ to $10^3/cm^3$ with an 06.5V star, the OTS approximation shows an about 3,000 K difference in the electron temperature, while the exact treatment of the DFR-transfer reduces the difference to about 1,000 K. The OTS approximation fails to demonstrate the brightening of the electron temperature close to the ionization boundary.

  • PDF