• Title/Summary/Keyword: Electron behavior

Search Result 1,272, Processing Time 0.028 seconds

Characteristics of the Low Pressure Plasma

  • Bae, In-Sik;Na, Byeong-Geun;Seol, Yu-Bin;Song, Ho-Hyeon;Yu, Sin-Jae;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.235.2-235.2
    • /
    • 2014
  • Plasma hardly grows in low pressure because of lack of collision. Especially, in extremely low pressure like 1 mTorr, the experiment scale is far larger than mean free path therefore plasma is hardly generated in such low pressure. But low pressure plasma has useful properties like low damage or fine sputtering process because it has typically low electron density. In here, thermal electron is used to make breakdown in low pressure easily and cylindrical geometry is used to help discharge easily. And we changed magnetic field strength to control electron density or temperature. In low pressure, density and temperature behavior is very interesting so its characteristics are examined here.

  • PDF

Crystallinity and Internal Defect Observation of the ZnTe Thin Film Used by Opto-Electronic Sensor Material (광소자로 사용되는 ZnTe박박의 결정성에 따른 결함 관찰)

  • Kim, B.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.289-294
    • /
    • 2002
  • ZnTe films have been grown on (100) GaAs substrate with two representative problems. The one is lattice mismatch, the other is thermal expansion coefficients mismatch of ZnTe /GaAs. It claims here, the relationship of film thickness and defects distribution with (100) ZnTe/GaAs using hot wall epitaxy (HWE) growth was investigated by transmission electron microscopy (TEM). It analyzed on the two-sort side using TEM with cross-sectional transmission electron microscopy (XTEM) and high-resolution electron microscopy (HREM). Investigation into the nature and behavior of dislocations with dependence-thickness in (100) ZnTe/ (100) GaAs hetero-structures grown by transmission electron microscopy (TEM). This defects range from interface to 0.7 $\mu\textrm{m}$ was high density, due to the large lattice mismatch and thermal expansion coefficients. The defects of low density was range 0.7$\mu\textrm{m}$~1.8$\mu\textrm{m}$. In the thicker range than 1.8$\mu\textrm{m}$ was measured hardly defects.

Microscopic Investigation of the Strain Rate Hardening for Metals (금속재료 변형률속도 경화의 미시적 관찰)

  • Yoon, J.H.;Huh, H.;Huh, M.Y.;Kang, H.G.;Park, C.G.;Suh, J.H.;Kang, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.352-355
    • /
    • 2007
  • Polycrystalline materials such as steels(BCC) and aluminum alloys(FCC) show the strain hardening and the strain rate hardening during the plastic deformation. The strain hardening is induced by deformation resistance of dislocation glide on some crystallographic systems and increase of the dislocation density on grain boundaries or inner grain. However, the phenomenon of the strain rate hardening is not demonstrated distinctly. In this paper, tensile tests for various strain rates are performed in the rage of $10^{-2}$ to $10^2s^{-1}$ then, specimens are extracted on the same strain position to investigate the microscopic behavior of deformed materials. The extracted specimen is investigated by using the electron backscattered diffraction(EBSD) and transmission electron microscopy(TEM) results which contain grain size, grain shape, aspect ratio and dislocation substructure.

  • PDF

Dual Gate-Controlled SOI Single Electron Transistor: Fabrication and Coulomb-Blockade

  • Lee, Byung T.;Park, Jung B.
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.208-211
    • /
    • 1997
  • We have fabricated a single-electron-tunneling(SET) transistor with a dual gate geometry based on the SOI structure prepared by SIMOX wafers. The split-gate is the lower-gate is the lower-level gate and located ∼ 100${\AA}$ right above the inversion layer 2DEG active channel, which yields strong carrier confinement with fully controllable tunneling potential barrier. The transistor is operating at low temperatures and exhibits the single electron tunneling behavior through nano-size quantum dot. The Coulomb-Blockade oscillation is demonstrated at 15mK and its periodicity of 16.4mV in the upper-gate voltage corresponds to the formation of quantum dots with a capacity of 9.7aF. For non-linear transport regime, Coulomb-staircases are clearly observed up to four current steps in the range of 100mV drain-source bias. The I-V characteristics near the zero-bias displays typical Coulomb-gap due to one-electron charging effect.

  • PDF

Etching characteristics and modeling of BST thin films using inductively coupled plasma (유도결합 플라즈마를 이용한 BST 박막의 식각 특성 및 모델링)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Dong-Pyo;Lee, Cheol-In;Kim, Tae-Hyung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.29-32
    • /
    • 2004
  • This work was devoted to an investigation of etching mechanisms for $(Ba,Sr)TiO_3$ (BST) thin films in inductively coupled $CF_4/Ar$ plasma. We have found that an increase of the Ar content in $CF_4/Ar$ plasma causes non-monotonic behavior of BST etch rate, which reaches a maximum value of 40 nm/min at 80% Ar. Langmuir probe measurements show a weak sensitivity of both electron temperature and electron density to the change of $CF_5/Ar$ mixing ratio. O-D model for plasma chemistry gave monotonic changes of both volume densities and fluxes for active species responsible for the etching process. The analysis of surface kinetics confirms the possibility of non-monotonic etch rate behavior due to the concurrence of physical and chemical pathways in ion-assisted chemical reaction.

  • PDF

Understanding Wet-End Polymer Performance through Visualization of Macromolecular Events by Transmission Electron Microscopy

  • Nanko, Hiroki;Mcneal, Michelyn;Pan, Shaobo
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.1-18
    • /
    • 2006
  • A novel transmission electron microscopy technique for the visualization of polymers adsorbed on secondary fines has been developed. This technique has been utilized in observing the adsorption behavior of various wet-end additives. The technique is sensitive enough not only to allow differentiation between linear and branched polymers, but also to observe differences in the adsorption behavior and conformational characteristics of particular polymeric derivatives. Conformational changes of a cationic polyacrylamide (CPAM) were examined in response to variations in wet-end conditions, such as mixing time and system conductivity. The molecular conformations of cationic starch and cationic guar gum were also examined by this technique. The technique has been employed to observe the effects of silica microparticles on the conformational characteristics of CPAM (drainage/retention aid) pre-adsorbed on secondary fines. The transmission electron microscopy method is a viable tool for investigating the macromolecular events that make up a large part of wet end chemistry in papermaking.

  • PDF

Electron Transport of Low Transmission Barrier between Ferromagnet and Two-Dimensional Electron Gas (2DEG)

  • Koo, H.C.;Yi, Hyun-Jung;Ko, J.B.;Song, J.D.;Chang, Joon-Yeon;Han, S.H.
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.66-70
    • /
    • 2005
  • The junction properties between the ferromagnet (FM) and two-dimensional electron gas (2DEG) system are crucial to develop spin electronic devices. Two types of 2DEG layer, InAs and GaAs channel heterostructures, are fabricated to compare the junction properties of the two systems. InAs-based 2DEG layer with low trans-mission barrier contacts FM and shows ohmic behavior. GaAs-based 2DEG layer with $Al_2O_3$ tunneling layer is also prepared. During heat treatment at the furnace, arsenic gas was evaporated and top AlAs layer was converted to aluminum oxide layer. This new method of forming spin injection barrier on 2DEG system is very efficient to obtain tunneling behavior. In the potentiometric measurement, spin-orbit coupling of 2DEG layer is observed in the interface between FM and InAs channel 2DEG layers, which proves the efficient junction property of spin injection barrier.

Electrochemical Study of [Ni63-Se)2μ4-Se)3(dppf)3] Cluster and Its Catalytic Activity towards the Electrochemical Reduction of Carbon Dioxide

  • Park, Deog-Su;Jabbar, Md. Abdul;Park, Hyun;Lee, Hak-Myoung;Shin, Sung-Chul;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1996-2002
    • /
    • 2007
  • The redox behavior of a [Ni6(μ3-Se)2(μ4-Se)3(Fe(η 5-C5H4P-Ph2)2)3] (= [Ni-Se-dppf], dppf = 1,1-bis(diphenylphosphino) ferrocene) cluster was studied using platinum (Pt) and glassy carbon electrodes (GCE) in nonaqueous media. The cluster showed electrochemical activity at the potential range between +1.6 and ?1.6 V. In the negative region (0 to ?1.6 V), the cluster exhibited two-step reductions. The first step was one-electron reversible, while the second step was a five-electron quasi-reversible process. On the other hand, in the positive region (0 to +1.6 V), the first step involved one-electron quasi-reversible process. The applicability of the cluster was found towards the electrocatalytic reduction of CO2 and was evaluated by experiments using rotating ring disc electrode (RRDE). RRDE experiments demonstrated that two electrons were involved in the electrocatalytic reduction of CO2 to CO at the Se-Ni-dppf-modified electrode.

Thermal Shock Behavior of TiN Coating Surface by a Pulse Laser Ablation Method

  • Noh, Taimin;Choi, Youngkue;Jeon, Min-Seok;Shin, Hyun-Gyoo;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.539-544
    • /
    • 2012
  • Thermal shock behavior of TiN-coated SUS 304 substrate was investigated using a laser ablation method. By short surface ablation with a pulse Nd-YAG laser, considerable surface crack and spalling were observed, whereas there were few oxidation phenomena, such as grain growth of TiN crystallites, nucleation and growth of $TiO_2$ crystallites, which were observed from the coatings quenched from $700^{\circ}C$ in a chamber. The oxygen concentration of the ablated coating surface with the pulse laser also had a lower value than that of the quenched coating surface by Auger electron spectroscopy and electron probe micro analysis. These results were attributed to the fact that the properties of the pulse laser method have a very short heating time and so the diffusion time for oxidation was insufficient. Consequently, it was verified that the laser thermal shock test provides a way to evaluate the influence of the thermal shock load reduced oxidation effect.

Analysis of dislocation density in strain-hardened alloy 690 using scanning transmission electron microscopy and its effect on the PWSCC growth behavior

  • Kim, Sung-Woo;Ahn, Tae-Young;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2304-2311
    • /
    • 2021
  • The dislocation density in strain-hardened Alloy 690 was analyzed using scanning transmission electron microscopy (STEM) to study the relationship between the local plastic strain and susceptibility to primary water stress corrosion cracking (PWSCC) in nuclear power plants. The test material was cold-rolled at various thickness reduction ratios from 10% to 40% to simulate the strain-hardening condition of plant components. The dislocation densities were measured at grain boundaries (GB) and in grain interiors of strain-hardened specimens from STEM images. The dislocation density in the grain interior monotonically increased as the strain-hardening proceeded, while the dislocation density at the GB increased with strain-hardening up to 20% but slightly decreases upon further deformation to 40%. The decreased dislocation density at the GB was attributed to the formation of deformation twins. After the PWSCC growth test of strain-hardened Alloy 690, the fraction of intergranular (IG) fracture was obtained from fractography. In contrast to the change in the dislocation density with strain-hardening, the fraction of IG fracture increased remarkably when strain-hardened over 20%. From the results, it was suggested that the PWSCC growth behavior of strain-hardened Alloy 690 not only depends on the dislocation density, but also on the microstructural defects at the GB.